


Onehouse



https://www.onehouse.ai/schedule-a-test-drive?utm_source=oreilly&utm_medium=asset&utm_campaign=2024_06_whitepaper_hudi_oreilly&utm_content=test_drive_link


Praise for Apache Hudi: The Definitive Guide

As a core contributor to Apache Hudi’s architecture, it’s gratifying to see
the elegant design principles and internals demystified so effectively. This
book is the definitive resource for understanding not just how to use Hudi
but how to tune for scale, throughput, and performance and build truly
correct incremental pipelines.

—Balaji Varadarajan, engineering, Applied Intuition,
Apache Hudi PMC

Modern data platforms are moving toward LLM-ready architectures—
fresh context assembled at query time for AI. Hudi pushes the lakehouse
there: incremental upserts, indexing, and partial updates keep that data
continuously correctable, low-latency, and affordable for AI workloads.

—Ananth Packkildurai, principal engineer, Zeta Global,
and author, Data Engineering Weekly

If you’re looking to build enterprise AI systems on lakehouse tables, look
no further than Apache Hudi and this book. If you need incremental
pipelines, primary keys for correct training data, time travel for data
versioning, and upserts for GDPR compliance, look no further than the
OG OTF.

—Dr. Jim Dowling, CEO, Hopsworks

In our batch data organization at Uber, Apache Hudi has been an
important part of enabling incremental ingestion and upserts at scale,
supporting the reliability and efficiency of our modern data platform.

—Jack Song, director of engineering, Uber



At Kuaishou.com, we have successfully modernized our traditional data
warehouse into a lakehouse architecture using Apache Hudi. This unified
platform supports both streaming and batch data ingestion,
accommodates both BI data warehouse and AI sample storage, and
delivers integrated SQL analytics and machine learning training
capabilities. Authored by core members of the Apache Hudi project,
Apache Hudi: The Definitive Guide not only provides deep insight into its
design philosophy and best practices but also stands as the essential
reference for building a modern lakehouse.

—Wang Jing, head of data platform department,
Kuaishou.com

Authored by Hudi’s core team, Apache Hudi: The Definitive Guide
demonstrates unparalleled depth and authority. It offers a comprehensive
statement of how Hudi reshapes best practices in data processing and
management. Its value has been proven in practice at JD.com. As a core
user and contributor, JD.com has leveraged Hudi to build near-real-time
efficient data pipelines, accelerating the transition from traditional data
warehouses to the lakehouse paradigm.

—Zhang Ke, head of AI and data infrastructure, JD.com

As an ecosystem community partner, we are delighted to see the
remarkable achievements Hudi has made in building real-time data
lakes. StarRocks + Hudi has already enabled many users to achieve
outstanding performance in real-time data lake analytics. I’m glad that
this book can share these experiences with a wider audience!

—Andy Ye, cofounder and COO, CelerData



Apache Hudi: The Definitive
Guide

Building Robust, Open, and High-Performing Data
Lakehouses

Shiyan Xu, Prashant Wason, Bhavani Sudha
Saktheeswaran, Rebecca Bilbro
Foreword by Vinoth Chandar



Apache Hudi: The Definitive Guide
by Shiyan Xu, Prashant Wason, Bhavani Sudha Saktheeswaran, and
Rebecca Bilbro

Copyright © 2026 O’Reilly Media, Inc. All rights reserved.

Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa
Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Andy Kwan

Development Editor Gary O’Brien

Production Editor: Jonathon Owen

Copyeditor: Audrey Doyle

Proofreader: Rachel Rossi

Indexer: Judith McConville

Cover Designer: Susan Brown

Cover Illustrator: José Marzan Jr.

Interior Designer: David Futato

Interior Illustrator: Kate Dullea

October 2025: First Edition

http://oreilly.com/


Revision History for the First Edition

2025-10-24: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098173838 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Apache
Hudi: The Definitive Guide, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Onehouse. See
our statement of editorial independence.

978-1-098-17392-0

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098173838
https://oreil.ly/editorial-independence


Foreword
When we began building Apache Hudi in 2016, our goal was clear but
ambitious: bring transactional database capabilities to the data lake. At the
time, this idea sounded counterintuitive—even controversial. Data lakes
were, by design, append-only file stores optimized for high throughput and
scale, not fine-grained updates or consistent reads. At Uber, where Hudi
was first conceived, our data volumes doubled every few months, and the
traditional data warehouse could no longer keep up. Streaming systems
were too expensive and lacked the capabilities we needed.

We needed a new kind of data platform—one that could scale like a data
lake, provide transactional capabilities like a data warehouse, and deliver
data incrementally like streaming systems.

That idea became Apache Hudi, and the first data lakehouse was born, even
before the term was coined.

Hudi introduced several foundational concepts that have since become
synonymous with the modern lakehouse architecture: incremental change
capture, write-optimized storage formats like Merge-on-Read, record-level
upserts, and background table services for compaction, clustering, and
cleaning. These ideas were novel at the time but have since become core
pillars across the ecosystem. Systems like Delta Lake and Apache Iceberg,
which followed Hudi, adopted many of these principles and extended the
conversation around openness and interoperability.

At the time, these ideas were radical. Today, they’re foundational.

In many ways, Hudi sparked one of the most significant shifts in database
technology over the past decade. The vibrant Hudi community has been
instrumental in this journey. What began as an internal project has grown
into a thriving open source ecosystem with contributors from across the
world—engineers, architects, researchers—each helping to evolve the
system to meet new use cases and challenges. This vision, powered by Hudi
and its successors, has redefined what it means to build data platforms at
scale.



But Hudi has always charted its own course. It was the first to enable
incremental pipelines natively, allowing downstream systems to consume
only what changed. It was the first to unify streaming and batch ingestion
within the same table abstraction. Today, it continues to lead with
innovations like secondary indexing, non-blocking concurrency control, and
metadata-driven optimizations, and to evolve toward AI-ready storage
formats that support vector searches, feature engineering, and model
training at scale.

This book arrives at an important moment—when more organizations than
ever are embracing lakehouse architectures but often struggle to piece
together the underlying concepts, trade-offs, and best practices. Hudi is a
powerful system, but like any foundational technology, its real strength is
unlocked when engineers understand both its design philosophy and
practical applications. That’s what makes this book so valuable. The authors
—longtime Hudi contributors and practitioners—have distilled years of
collective experience into clear explanations, hands-on examples, and
actionable design patterns. Whether you’re building your first transactional
data lake or tuning an existing Hudi deployment, this book will help you
grasp the advanced ideas behind Hudi’s architecture and apply them with
confidence—turning Hudi into a power tool in your lakehouse toolkit.

I’m thrilled to see how far Hudi has come—and even more excited about
where it’s going.

Vinoth Chandar
Original creator of Apache Hudi
Founder & CEO, Onehouse



Preface

Why This Book, and Why Now
Modern data platforms are being asked to do more than ever before. They
must serve fresh data to dashboards, power machine learning features in
real time, and support operational applications alongside traditional
analytics. At the same time, volumes of data are growing rapidly, pipelines
are increasingly complex, and organizations cannot afford downtime or
inconsistency. The gap between what businesses expect and what legacy
systems can deliver has only widened.

Apache Hudi emerged to address exactly this gap. By bringing transactions,
incremental ingestion, and advanced table services to the data lake, Hudi
redefined what was possible. It pioneered the data lakehouse architecture,
which unifies the openness and scalability of lakes with the reliability and
performance of warehouses. In recent years, Hudi has matured into one of
the most widely adopted open table formats, supported by a vibrant
community and deployed at scale in industries ranging from technology and
finance to retail and research.

The world of data architecture is at an inflection point. Lakehouses have
transitioned from a cutting-edge idea to an industry standard. Hudi has kept
pace, introducing powerful features such as multiwriter concurrency
control, metadata-driven optimizations, and integrated streaming ingestion.
Yet with this power comes the responsibility to make the right choices—
there are design trade-offs, operational considerations, and architectural
choices that can be difficult to navigate. This book exists to make those
choices clearer, drawing on both the lessons of early adopters and the latest
best practices.



Who This Book Is For
This book is written for practitioners: the engineers, architects, and
technical leaders who design, build, and operate large-scale data platforms.
You’ll find it useful if you are one of the following:

A data engineer or platform engineer responsible for building
ingestion pipelines or managing high-velocity data streams

A data architect evaluating ways to unify data lakes and
warehouses

A developer or analyst who needs consistent, incremental access to
large and evolving datasets

A technical manager or leader making strategic decisions about
adopting lakehouse technologies

This is not a beginner’s introduction to databases or distributed systems.
Readers should already be comfortable writing SQL, familiar with
distributed processing engines such as Apache Spark or Apache Flink, and
have a basic understanding of data pipelines. While deep expertise is not
required, the book moves quickly from foundational principles to advanced
operational guidance.

The Technology and Its Moment
At its heart, Hudi transforms the data lake into something more like a
database—a transactional data lake—one that can ingest incrementally,
perform upserts and deletes efficiently, and serve consistent snapshots of
data at any point in time. It automates tedious table maintenance such as
compaction, clustering, and cleaning to ensure performance as datasets
grow. Most importantly, it unifies batch and streaming on the same storage,
eliminating the need to manage parallel data systems.

The broader data ecosystem has been moving in this direction as well. The
lakehouse architecture has become the centerpiece of modern platforms,



combining openness, reliability, and performance. Since it became open
source in 2017, Hudi has advanced rapidly and is now one of the leading
open table formats, alongside other open source lakehouse projects. Its
adoption reflects a broader industry trend toward open, interoperable
systems that can serve both analytical and operational workloads in real
time.

What’s in This Book
The chapters in this book are designed to guide you from basic principles to
advanced practices while also serving as a reference you can revisit as your
Hudi deployment progresses. Each chapter introduces core concepts,
explains their design rationale, and demonstrates how to apply them in
practice. While the initial chapters lay the groundwork for understanding
the system, later chapters delve into specific components of the
architecture, and the final chapters explore end-to-end applications and
equip readers with operational tools to run Hudi in production:

Chapter 1, “What Is Apache Hudi?”

This chapter sets the stage by exploring the rise of the data lakehouse as
a unifying architecture for modern data needs. It explains the limitations
of traditional warehouses and data lakes, and how Hudi emerged to
close the gap between streaming and batch workloads. You’ll learn the
core ideas behind incremental ingestion, transactional tables, and real-
time access. By the end, you’ll see why Hudi is foundational to the
lakehouse paradigm.

Chapter 2, “Getting Started with Hudi”

Here, we take a hands-on approach: creating your first Hudi table,
inserting data, and issuing queries. The chapter introduces Hudi’s two
main table types—Copy-on-Write and Merge-on-Read—while showing
you how these affect updates and queries. You’ll also get familiar with
table metadata, commits, and the overall lifecycle of a Hudi dataset.



This practical starting point lays the essential foundations and ensures
that you can move confidently into deeper topics.

Chapter 3, “Writing to Hudi”

This chapter covers writing data to Hudi, a key process for reliable,
efficient lakehouses. It begins by explaining the full write flow, from
record preparation to transaction finalization, ensuring correctness at
scale. It then links these concepts to real-world tasks like insert, upsert,
delete, and bulk insert, using an Internet of Things (IoT) data provider
as an example. Lastly, it discusses advanced features like key
generators, schema evolution, and bootstrapping, equipping readers to
build high-performance, adaptable pipelines on Hudi.

Chapter 4, “Reading from Hudi”

A system is only as valuable as its ability to serve data. This chapter
covers how Hudi tables can be read in multiple modes: snapshot queries
for current views, incremental queries for change data capture, and time
travel for debugging or compliance. It demonstrates how Hudi
integrates with engines like Spark, Presto, and Apache Hive, while
maintaining strong guarantees. Readers walk away knowing how to
expose reliable, consistent data to downstream consumers.

Chapter 5, “Achieving Efficiency with Indexing”

This chapter describes how Hudi achieves efficiency and scalability via
its indexing system. It covers basic indexing in a lakehouse, showing
how indexes assist writers in quickly locating records for updates and
deletes, and readers by pruning files and partitions to accelerate queries.
The chapter then discusses different index types, from general-purpose
record indexes to specialized ones like Bloom, bucket, and expression
indexes, catering to various workloads. By the end, readers will learn to
choose and implement the right index strategy to optimize performance,
cost, and complexity for near-real-time lakehouse performance at scale.

Chapter 6, “Maintaining and Optimizing Hudi Tables”



Hudi’s background services are what keep tables healthy over time. This
chapter explores primary table services like cleaning, compaction,
indexing, and clustering, showing how they reclaim storage, optimize
file layout, and boost query performance. It explains when to run these
services synchronously versus asynchronously, and how to tailor them
for your workloads. With this foundation, you’ll be prepared to operate
tables that scale smoothly without manual firefighting.

Chapter 7, “Concurrency Control in Hudi”

This chapter examines concurrency control in Hudi, emphasizing how
to keep data consistent and accurate in data lakes with many readers and
writers. It addresses challenges in distributed setups and explains how
Hudi combines techniques like optimistic, multiversion, and non-
blocking concurrency control to enhance scalability and accuracy. The
chapter discusses multiwriter scenarios, conflict resolution, and locking
strategies, providing practical tips for efficient parallel operations
without sacrificing data quality. Ultimately, it guides readers in creating
reliable, scalable data pipelines while managing the complexities of
modern data lakes.

Chapter 8, “Building a Lakehouse Using Hudi Streamer”

Streaming ingestion is where Hudi truly shines. This chapter introduces
Hudi Streamer, a ready-to-use tool for bringing data from Apache
Kafka, Amazon S3, or other event sources directly into Hudi tables.
You’ll see how to configure incremental pipelines with schema
evolution, transformations, and checkpoints built in. By the end, you’ll
understand how to unify streaming and batch data in a single, coherent
platform.

Chapter 9, “Running Hudi in Production”

Moving from development to production introduces a whole new set of
challenges. This chapter equips you with operational tools like the Hudi
CLI, savepoints and restores for disaster recovery, post-commit



callbacks, and catalog syncing across engines. It also covers monitoring
strategies and performance tuning for Spark and Flink, ensuring that
your pipelines remain robust. Readers gain the confidence to run Hudi
at scale while minimizing risk and overhead.

Chapter 10, “Building an End-to-End Lakehouse Solution”

The final chapter brings everything together in a real-world scenario.
Using the example of RetailMax Corp., you’ll follow data from
ingestion through Bronze, Silver, and Gold layers into downstream
analytics and AI applications. The chapter demonstrates how to
combine Flink, Kafka, Debezium, and Hudi into a unified lakehouse
architecture that supports both operational and analytical needs. It
serves as both a blueprint and inspiration for building your own end-to-
end data platform.

How to Use This Book
This book is designed to be flexible. Newcomers to Hudi or the lakehouse
paradigm will benefit from reading sequentially, as the concepts build
naturally from one chapter to the next. More experienced practitioners may
want to jump directly to the sections most relevant to their needs—for
example, indexing and table services for performance tuning, or
concurrency control for managing multiwriter workloads.

The concluding end-to-end application in Chapter 10 can be read at any
stage. It can serve as early inspiration to see what’s possible, or as a
practical integration guide once you’re ready to design your own lakehouse
platform.

Above all, our hope is that this book becomes a trusted reference: a
resource you can return to as your data platform evolves, whether you are
just starting to explore Hudi or scaling a production system to its limits.

Conventions Used in This Book



The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.
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NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

https://oreilly.com/
https://oreilly.com/
mailto:support@oreilly.com
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We have a web page for this book, where we list errata and any additional
information. You can access this page at https://oreil.ly/apache-hudi-
definitive-guide.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book would not exist without the work of the Apache Hudi
community. From Hudi’s earliest days at Uber to the vibrant, global project
it is today, countless contributors have shaped Hudi’s design,
implementation, and documentation. Their code, ideas, and feedback are the
foundation on which this book is built.

We are especially grateful to the members of the Project Management
Committee (PMC) and active committers, who have not only written core
functionality but also guided the project’s direction and nurtured its
community. Many of the insights in these pages come directly from lessons
they shared in design discussions, user support threads, and production
battle stories.

Thanks also go to the Apache Software Foundation (ASF) for providing the
governance and infrastructure that make collaborative open source
innovation possible.

Special thanks go to our technical reviewers—Benjamin Bengfort, Vikram
Singh Chandel, and Michal Gancarski. Their thoughtful feedback sharpened
the explanations, caught gaps, and ensured that the examples reflect real-
world usage. Their careful attention and practical insights have made this
book stronger and more reliable for its readers.

Finally, we’d like to acknowledge the users of Hudi—the engineers,
analysts, and architects across industries who pushed the system to new

https://oreil.ly/apache-hudi-definitive-guide
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia


limits and, in doing so, helped it evolve. Your real-world challenges,
successes, and feedback are reflected throughout this book.

To all of you: thank you.



Chapter 1. What Is Apache
Hudi?

No one opens a book on data platforms because they’re having an easy
week at work.

That’s because building data platforms is not for the faint of heart; it’s often
a matter of custom development and experimentation, requiring constant
research into the rapidly evolving open source landscape and painstaking
architectural tuning over periods of months or even years. We don’t embark
on such journeys casually.

Interestingly, most people are blissfully unaware of the data platform at
their organization. They only start discussing it when something has gone
very wrong.

Our assumption is that you are reading this book because you are looking to
improve how your organization works with data. Perhaps customers have
begun complaining about seeing stale or inconsistent data. Or the legacy
database that served you for a decade is buckling under the analytical query
load or new machine learning features. Maybe your data warehouse has
simply become too expensive to scale as data-driven workloads keep
spiking.

If any of these scenarios sound familiar, this book may be just what you
need. In fact, if the preceding description resonates, it is probably because
your organization needs a data lakehouse—a modern data platform that not
only addresses these challenges but also unlocks new opportunities for
faster insights, advanced analytics, and data-driven innovation at scale.

The lakehouse architecture is the current state of the art for orchestrating
the efficient storage, processing, and analysis of large volumes of data.
Apache Hudi stands out as an open source technology that empowers data



platform teams to implement and maintain this architectural paradigm with
ease.

In this opening chapter, we’ll prepare you for your lakehouse odyssey by
reviewing the evolution of data management architectures, including Hudi’s
own origins at Uber. We’ll outline Hudi’s key features, dive into the
architectural stack, and explore its real-world applications, giving you a
solid mooring for the concepts covered in the rest of this book.

The Evolution of Data Management
Architectures
From humble beginnings with spreadsheets and rudimentary file formats to
massively distributed systems, the journey to the lakehouse is a tale of
technological evolution in an age of explosive growth in data volume,
variety, and velocity.

Traditional relational databases offered the first solution, providing strong
consistency and structured storage optimized for transactions. However,
their row-oriented architecture ultimately proved inadequate for large-scale
analytical queries, failing to deliver the necessary performance at scale. To
address this, data warehouses were introduced, providing structured query
and reporting features ideal for business intelligence and analytics but
offering limited support for unstructured and semi-structured data and
becoming costly at scale.

The data lake architecture emerged to handle those problems, allowing
organizations to leverage cost-effective distributed file systems like the
Hadoop Distributed File System (HDFS) to store large volumes of raw,
heterogeneous data without immediate structuring or processing. This
flexibility lays the groundwork for advanced analytics (e.g., real-time
models) and machine learning applications (e.g., generative AI) that thrive
on large, diverse datasets. Data lakes allow you to capture all the data for
your organization, not just what you already know you need today.



But even if you incorporate a data lake into your platform, you may still
have problems such as the following:

Lack of mutability

Synchronizing data between a lake and its upstream sources is a pain,
especially if the synchronization needs to support real-time analysis.
Data lakes conceive data as fundamentally immutable (i.e., not subject
to transactions or upserts), and as such are designed to be updated in
batches, not in real time. That lack of mutability introduces latency,
often resulting in stale analytics.

Lack of schema and structure

Unlike your data warehouse, where users can easily inspect table
schema to get hints at how to construct their analytical queries, the
unstructured nature of data lakes often results in “data swamps” that
downstream users perceive as inconvenient or inscrutable.

Insufficient transactional support

Without transactional capabilities and ACID guarantees (Atomicity,
Consistency, Isolation, Durability), data is harder to trust. It’s difficult to
manage concurrent operations (e.g., a bursty ETL job could clobber a
complex analytical process). You may fail to restore the correct state of
the data in the case of system failures.

Data governance

Data lakes are not designed to provide data governance and provenance
measures out of the box, which means it’s your problem to implement
policies and granular access controls to prevent data breaches and so
that you do not jeopardize regulatory compliance.

The Rise of Data Lakehouses
The lakehouse architecture emerged to address the limitations of data lakes
and traditional data warehouses by combining the core features of each into



a unified platform, as illustrated in Figure 1-1.1 By utilizing the scalability
and flexibility of data lakes while integrating the performance, reliability,
and governance capabilities of data warehouses, the lakehouse offers a
more comprehensive approach to data management.

Figure 1-1. Lakehouses combine the best of data warehouses and data lakes

The lakehouse architecture (shown in Figure 1-2) is built upon a distributed
file system (e.g., HDFS) or a cloud storage system (e.g., Amazon S3). This



foundation serves as the primary storage layer, accommodating large
volumes of data in its raw form, whether structured, semi-structured, or
unstructured.

Atop this storage layer, the lakehouse implements a transaction layer, which
is crucial for enhancing data management capabilities. This layer typically
defines the file format (which defines how data is structured and encoded
on disk within a single file) and table format (which defines how a
collection of data files is managed and presented as a single table),
facilitates running table services, supports transactions, and so on. This
transaction layer is key to transforming a traditional data lake into a
lakehouse. It enables advanced features such as ACID transactions, time
travel queries, change data capture (CDC), and data versioning.





Figure 1-2. Lakehouse architecture

These capabilities are fundamental for ensuring data reliability and
consistency within the system, while also enabling query engines to access
and process data correctly and efficiently.

Although this architecture offered early adopters significant gains, it also
introduced more complexity. The story of Hudi’s incubation at Uber, told in
the next section, is a story about managing this complexity in real time and
harnessing the power of a highly tailored distributed data system built from
the ground up.

Uber’s “Transactional Data Lake” Problem
In early 2016, amid a period of hypergrowth, Uber embarked on a transition
from a warehouse architecture to a data lake–based architecture. This shift,
necessitated by the growing scale and complexity of Uber’s operations,
presented challenges that demanded innovation, particularly in ensuring
transactional guarantees atop immutable storage. At that time, the idea of a
lakehouse was not yet in the industry’s vocabulary. Uber’s engineers
described their approach as a “transactional data lake”—a data lake
augmented with database-like functionality. With no production-ready
solutions available, Uber had to invent its own.

Central to Uber’s operations is the “trips” data (Figure 1-3), which, while
captured live in online databases, required extensive offline analytical
processing for any meaningful analysis—analysis that underpins much of
Uber’s decision making. The limitations of the initial data lake of “trips”
became evident quickly in the face of its sheer magnitude—about 120 TB
per day!



Figure 1-3. Uber’s old, file-based data lake architecture and its challenges

As shown in Figure 1-3, it was starting to get quite complex to manage and
process data at that scale. Changelogs from upstream databases were
ingested into raw tables formatted in Apache Parquet files. Every 8 hours,
the lake reingested the entire 120 TB, though the actual changes constituted
less than 500 GB. This inefficiency extended downstream, where pipelines
built on the raw layer also recomputed the entire dataset every 8 hours,



resulting in end-to-end data freshness of around 24 hours. This lag was
particularly problematic given that the average ride is over in just 20
minutes.

Not only was the platform throttling analysis and decision making, but there
was no effective control over failure recovery scenarios. A single ingestion
job failure could cascade into widespread pipeline disruptions, necessitating
extensive cleanup and retries.

The engineering team came together to discuss how to approach the
problem.

They wondered:

Can we consume only the changes instead of performing a full
recompute? If so, it would drastically reduce the amount of data
and compute resources required for each ingestion. And can
downstream tables do the same?

Can we also devise a method to absorb these changes more quickly
into the tables? The complexity doesn’t end with the initial raw
table; downstream derived tables face similar challenges.

Throughout this process, can readers consistently query snapshots
of the table without being exposed to partial or corrupted data?

These considerations became the guiding principles and laid the foundation
for Hudi’s core primitives and capabilities:

Database abstraction

Provide snapshot isolation between readers and writers. Never expose
inflight or corrupt data.

Incremental processing

Identify and process only records that have changed since the last
refresh. Full recompute is no longer the norm.

Efficient upserts



Apply change records into the table using indexes with specialized
concurrency controls.

With these capabilities in place, along with background table services to
maintain and optimize the tables, Hudi evolved into a serverless transaction
layer with database-like abstractions for DFS-compatible storage. This new
architecture (shown in Figure 1-4) led to significant operational gains, with
upserts capturing only 500 GB of data in less than 10 minutes and reducing
end-to-end latency from 24 hours to just 1 hour. These improvements fueled
a growing number of internal use cases at Uber, driving rapid evolution of
the Hudi project. By the end of 2016, Hudi was in production at Uber, with
the initial version already encompassing essential features such as upserts,
indexing, and change streams.



Figure 1-4. Uber’s new Hudi-based transactional data lake



Recognizing Hudi’s broader potential beyond Uber, the company decided to
make the project open source in 2017. This move allowed Hudi to gain
wider adoption, garner support from various query engines, and expand its
cloud compatibility. In 2019, Uber donated Hudi to the Apache Software
Foundation (ASF), making it freely available under the Apache License 2.0.
This decision aimed to foster innovation and collaboration and to establish
Hudi as a standard framework for managing data in large-scale distributed
environments. The project graduated to a top-level Apache project in 2020.

Since its inclusion in the ASF, Hudi has experienced rapid adoption and
development. The open source community has embraced the project, with
contributions from engineers and data scientists across a variety of
industries. The first official release of Hudi under the ASF occurred in
January 2019, and since then, the project has maintained a consistent
release cadence, introducing new features, enhancements, and bug fixes.
Hudi has added multiwriter concurrency, metadata-driven query
acceleration, and deep integrations with Apache Spark, Apache Flink,
Apache Hive, Presto, and cloud native storage. Its evolution illustrates how
the original concept of a transactional data lake anticipated what the
industry later came to call a lakehouse: a unified architecture that combines
the reliability and performance of warehouses with the scale and openness
of lakes.

Today, Hudi continues to thrive as a leading open source lakehouse
platform. It is widely adopted by organizations such as Uber, Walmart,
Kuaishou, and JD.com, supporting diverse workloads that demand both
real-time freshness and large-scale analytics. With its 1.0 release, Hudi has
solidified its role as a comprehensive data lakehouse management system
(DLMS), staying true to its original vision while shaping the future of data
platforms.

What Is Hudi?
Hudi is an open data lakehouse platform designed to address a wide range
of data management challenges across various industries. Real-world
lessons from some of the largest data lakehouses in the world about
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processing high-throughput heterogenous data efficiently are encoded into
Hudi’s multilayered architecture, which includes a mix of data lake,
database, and data warehouse functionalities.

With its native high-performance table format, Hudi offers a robust solution
for workloads involving frequent changes, such as updates or deletions. Its
indexing and file layout optimization strategies streamline data operations,
making it particularly beneficial for dealing with CDC scenarios and
streaming data with minute-level data freshness. This capability effectively
unifies both batch and streaming use cases on the same data, providing an
efficient alternative to real-time data marts for a wide range of data
applications.

Hudi is also designed to be highly compatible with other open source and
commercial data libraries, tools, and systems. As shown in Figure 1-5, Hudi
can incorporate data files across various data storage systems, including
HDFS and cloud stores like Amazon S3, Google Cloud Storage (GCS), and
Azure Blob Storage. Hudi supports various file formats, including Parquet,
Apache ORC, and Apache Avro, ensuring compatibility with event-
streaming tools like Apache Kafka, as well as popular OLAP engines and
data warehouses.



Figure 1-5. Hudi in the big data ecosystem

Hudi enables data platform engineers to conveniently implement critical
features and application semantics into their lakehouse architectures, such
as ACID transactions, efficient indexing, and advanced table maintenance
services. Its key features include:



ACID transactions

Hudi ensures data consistency and integrity through ACID transactions,
preventing issues like partial writes or data corruption, which are
common in traditional data lakes. Developers can rely on the
correctness of their data, simplifying application development,
debugging, and compliance in production systems.

Mutable workloads

Unlike most table formats that are optimized for append-only use cases,
Hudi natively supports fast upserts and deletes. With its extensible
indexing and efficient storage layout, Hudi can handle workloads
involving streaming data, bursty traffic, out-of-order events, and
deduplication. This makes your lakehouse behave more like a database
system, not just a static archive.

Flexible and powerful indexing

Hudi maintains rich, extendable indexes about the data it manages,
enabling faster writes and optimized queries, especially for large and
wide tables, and it can be customized to suit specific workloads. This
makes large-scale analytical queries far more efficient than relying only
on partition pruning.

Streaming-first design

Hudi was created to bridge the gap between batch and stream
processing, and as a result, it offers unique capabilities for managing
streaming data. It handles event-time ordering natively, ensuring that
tables stay consistent and accurate even when data arrives out of order
—an everyday reality in real-world pipelines.

Scalable metadata for large-scale datasets

Hudi’s metadata table is designed to manage petabytes of data
efficiently by storing the metadata in an indexed storage format. It also



maintains additional metadata, such as column statistics, so that query
planning scales with the number of queried columns rather than the total
size of the table or file count. This ensures reliable performance even
for very large or wide datasets where traditional flat-file approaches
struggle.

Incremental processing

By capturing and processing only data changes, Hudi significantly
reduces processing time and resource consumption while also enabling
near-real-time freshness. Downstream systems benefit from CDC feeds,
supporting both streaming and microbatch workloads.

Concurrency control

Hudi offers advanced concurrency control mechanisms with
multiversion concurrency control (MVCC) and optimistic concurrency
control (OCC), ensuring that multiple jobs can write safely to the same
table. It also supports innovative non-blocking concurrency control
(NBCC) to avoid bottlenecks in high-throughput pipelines such as
streaming workloads, ensuring reliable updates without sacrificing
ingestion speed.

Automated table services

Hudi automates table services, including clustering, compaction,
cleaning, and indexing, to ensure that your tables are highly optimized
for both read and write operations and that they are well maintained for
efficient storage. Different deployment modes are supported for flexible
needs in the production environment, including automatic scheduling
and execution.

Multicloud support and wide integration

Hudi is built for broad ecosystem adoption, preinstalled on major cloud
platforms and integrated with leading engines like Spark, Flink, Hive,
Presto, and Trino. It also offers native tools for auto-ingestion from



Kafka or Debezium and automatic catalog sync for discoverability. With
support across languages like Python and Rust, Hudi fits naturally into
diverse data ecosystems.

The Hudi Stack
Hudi achieves the data lakehouse architecture by adding core warehouse
and database functionality directly to a data lake, transforming it from a
simple collection of files into a system of well-managed tables. The Hudi
stack consists of five component groups that work in tandem, as illustrated
in Figure 1-6:

High-performance table format

Storage engine

Programming API

User access

Shared platform components

We will briefly go through these groups in the remainder of this section.





Figure 1-6. Hudi stack

Native Table Format
The Hudi table format refers to the way data is stored and organized in Hudi
tables (i.e., the file storage mechanism and layout). Hudi’s table format is
responsible for tracking table schema, partitions, files, and table-level
statistics. It has three main components:

File groups and file slices

Hudi organizes data files into logical units called file groups, each
identified by a unique file ID. File groups are further divided into file
slices, which can be thought of as versions. Each file slice may contain
a base file and a list of log files, representing the state of all records in
that file group at a specific point in time.

Timeline

The timeline serves as an event log, providing an ordered list of actions
performed on the table over time. Stored under the .hoodie folder in the
table base path, the timeline allows for efficient tracking and
management of table changes.

Metadata table

Located at .hoodie/metadata, this internal table enhances write and read
performance by centralizing metadata operations. It supports various
metadata types, including partition and file lists, column statistics,
record-level indexing, and expression indexes.

Chapters 2 and 5 will explore these concepts in greater detail.

Pluggable Table Format
Hudi achieves interoperability with a pluggable table format layer, enabling
it to both read and write in formats like Apache Iceberg and Delta Lake.



Unlike solutions limited to reader compatibility, Hudi preserves its
transactional and performance benefits while supporting multiple table
formats. This flexibility allows organizations to conform to diverse
ecosystem standards and integrate seamlessly with downstream systems. By
decoupling its storage engine from the table format, Hudi positions itself as
a future-proof, multiformat lakehouse platform for an evolving data
ecosystem.

Storage Engine
The storage engine components bring the “database experience” (i.e.,
ACID transactions, efficient upserts and deletes, query optimizations) to
your data lake, with highly optimized and advanced implementations of
core database functionality.

Indexes
Hudi implements an extensible indexing layer that makes data lakes truly
efficient for both writes (updates and deletes) and queries. Indexes allow
Hudi to quickly locate records during upserts and deletes, avoiding costly
full-table scans. At the same time, they enable queries to skip over
irrelevant files, reducing latency and improving performance even at
massive scale. Various indexes are available:

Record index

Bucket index

Simple index

Bloom index

Secondary index

Expression index

These index types cater to diverse data patterns and traffic scenarios. By
choosing the right indexing strategy, organizations can optimize their



lakehouse for diverse workloads. Chapter 5 will dive deeper into how
indexing works in Hudi for both writes and reads, and how to select suitable
index types.

Lake cache (currently in development)
The lake cache component provides a multitenant caching tier that
optimizes the trade-off between write speed and query performance in data
lakes. It stores premerged file slices and leverages Hudi’s timeline for cache
policy management. Unlike traditional query engine caches, this integrated
caching layer is shared across engines and supports transactional operations
like updates and deletions, effectively serving as a unified buffer pool for
data lakes.

Concurrency control
Hudi ensures atomic writes and provides snapshot isolation across writer
processes, table services, and readers. It employs three main concurrency
control mechanisms:

MVCC

Implemented in a lock-free, nonblocking manner between writers and
table services, and between different table services.

OCC

Used between writers with a locking mechanism to resolve conflicts
during commits.

NBCC

Enables multiple writers to operate on the table simultaneously without
blocking, eliminating wasted retries and keeping streaming pipelines
fast and consistent—ideal for high-throughput use cases like
multistream writes into the same table.

Chapter 7 will unpack Hudi’s concurrency model in more detail.



Table services
Hudi includes built-in table services that perform maintenance and
administrative tasks to ensure smooth and efficient operation. These
services can run in inline, asynchronous, or offline mode. Key table services
include:

Compaction

Merges base files with changelogs to create updated base files, allowing
concurrent writes to the same file group.

Clustering

Groups and colocates similar data in lake storage, improving query
performance through data locality and larger file sizes.

Cleaning

Removes file slices older than the desired retention period for
incremental queries.

Indexing

Builds and maintains different types of indexes to speed up queries and
updates by reducing the amount of data scanned from storage.

Chapter 6 will provide an in-depth look into maintaining and optimizing
Hudi tables using these table services.

Working together, indexes, lake cache, concurrency control, and table
services serve as a robust, efficient, and flexible storage engine in the Hudi
stack, enabling advanced data management capabilities in a lakehouse
environment.

Programming API
The programming API components provide developers with direct access to
Hudi’s core functionalities through well-defined interfaces. This lower-level



integration point offers the flexibility to handle complex data scenarios,
implement custom logic, and fine-tune both write and read operations. This
will enable advanced users to extend Hudi’s capabilities beyond the
standard offerings, supporting diverse use cases from batch processing to
real-time analytics.

Writers
Hudi tables extend beyond simple Parquet/Avro sinks, supporting both
incremental operations (insert, upsert, delete) and batch operations
(insert_overwrite, delete_partition, bulk_insert)
through Spark, Flink, and Java applications. Key features include:

Operation-based optimizations

Hudi optimizes each operation type: upserts and deletes merge by key
with index lookups, inserts skip unnecessary steps and retain efficiency,
and bulk inserts provide several sort modes for controlling initial file
sizes and file counts. These capabilities make data pipelines faster, more
consistent, and highly scalable.

MVCC-based batch writes

Hudi uses MVCC to bring transactional safety to typical batch
overwrite semantics. With this foundation, teams can confidently switch
between incremental ingestion for regular runs and batch jobs for
backfilling or dropping older partitions, while preserving consistency
and reliability.

Record keys at the core

Record keys are first-class citizens in Hudi, guaranteeing the uniqueness
of records across partitions or within partitions of Hudi tables. Record
keys are used everywhere, from indexing, merging, clustering, and
compaction to consistently tracking/controlling the movement of
records within a table and across files. In addition to record keys, Hudi
preserves record-level metadata, enabling record-level change streams
and incremental queries.



Extensible key generators

Hudi provides built-in and customizable key generators for defining
unique record identifiers. Keys are materialized in metadata, allowing
better consistency and fine-grained control over how updates are
applied.

Merge modes

Users can configure merge mode for common merging semantics or
define a custom merging strategy for complex conflict resolution. This
ensures data consistency and efficiency for even complex business use
cases.

Chapter 3 will walk through Hudi’s writing capabilities in depth.

Readers
Hudi ensures consistent, reliable views of data through snapshot isolation,
even as writes occur in the background. By tracking record-level event and
commit timestamps, it supports powerful capabilities like time travel query
and incremental query, including CDC, enabling analysts, data scientists,
and business users to work with the most relevant and up-to-date
information—crucial for real-time analytics and continuously evolving
lakehouses.

The primary reader-oriented features of the programming API include:

Broad query engine compatibility

Hudi integrates seamlessly with popular query engines such as Spark,
Flink, Hive, Presto, and Trino, allowing organizations to analyze their
data using the tools they already know and trust.

Optimized read performance with vectorized operations

Hudi supports vectorized reading of Parquet files and scan pruning
through column statistics, enabling faster, more efficient reads—



especially beneficial for large-scale, high-performance analytics
workloads.

Time travel

With record-level metadata on event and commit timestamps, Hudi
enables time travel queries, facilitating auditing and debugging across
historical snapshots.

Incremental queries

Readers can pull only the records changed for a given time window,
cutting down on latency and overhead for dashboards, machine learning
pipelines, and real-time applications. With CDC mode, incremental
queries can serve much richer insights about the record changes.

Snapshot isolation

Hudi guarantees consistent query results with snapshot isolation, even
under concurrent writes—ensuring reliability in both batch and
streaming lakehouse environments.

Chapter 4 will explore Hudi’s reading capabilities in detail.

User Access
The user access components in the Hudi stack serve as the bridge between
Hudi’s sophisticated data management capabilities and its end users’ varied
needs, enabling them to harness Hudi’s data lakehouse features while
working with their preferred tools and languages.

SQL
Hudi’s versatility extends to its support for a wide range of SQL engines,
enabling flexible data processing for both batch and streaming workloads.

Most teams use Spark for batch processing with Hudi, leveraging its
distributed ETL capabilities, and Hudi also integrates seamlessly with Flink



and Spark Structured Streaming for real-time, incremental data processing.
In fact, one of Hudi’s key features is its ability to handle incremental
queries, allowing users to efficiently process only the changes since the last
run.

Hudi’s query interface abstracts the complexities of underlying data storage
formats (e.g., Parquet) and provides a unified access layer. This allows
users to query Hudi datasets seamlessly without needing to understand the
low-level data layout.

As such, Hudi is designed to meet your queries where they already are; all
the modern query engines, such as Trino and Presto, are supported, enabling
fast, interactive, SQL-like querying of Hudi datasets. This means there’s no
need to learn a whole new query language.

Finally, Hudi’s support for high-performance analytical databases like
ClickHouse and StarRocks enables fast querying of large-scale data. With
built-in support for ACID transactions, schema evolution, and optimized
query performance through indexing and partitioning, Hudi provides both
consistency and scalability, making it an ideal choice for analytical
workloads in dynamic environments.

Code
Hudi’s code level integration complements its SQL capabilities, recognizing
that while SQL remains the dominant tool for data engineering, developers
and data scientists often need to analyze data using sophisticated algorithms
with full expressiveness of programming languages like Java, Scala, and
Python. Hudi addresses this need by supporting several widely used data
processing frameworks that give users the flexibility to work in their
preferred languages. Beyond its core support for distributed frameworks
like Spark and Flink, Hudi extends its reach to Python-based distributed
systems including Daft and Ray, while also offering native Rust bindings
for seamless integration with C/C++-based engines.

Shared Platform Components



Hudi is more than a table format. It comes with a rich suite of built-in
utilities that make managing data pipelines and production operations
seamless. These shared components reduce integration effort, simplify
streaming, and provide the guardrails needed to run Hudi tables at scale:

Effortless streaming and ingestion

Hudi includes Hudi Streamer, a popular ingestion tool that can
continuously consume from Kafka, DFS, or other streaming sources;
apply transformations; and write to Hudi tables. It also integrates tightly
with Kafka Connect and Debezium, making it simple to perform CDC
from upstream databases and land it in Hudi with minimal setup. This
eliminates the need to build complex, custom CDC pipelines.

Seamless catalog and metadata management

Hudi supports automatic synchronization with Hive Metastore, AWS
Glue Data Catalog, DataHub, and other catalogs, ensuring that tables
are immediately queryable by popular engines without extra steps.

Comprehensive administration and monitoring

The Hudi CLI provides users with control over table states, running
table services, and more. Metrics integration with Prometheus, Datadog,
and Amazon CloudWatch enables robust monitoring, giving engineers
visibility into ingestion pipelines and table services.

Hudi in the Real World
As more and more businesses find themselves drowning in data and driven
to develop more robust, scalable, and versatile solutions, many are turning
to Hudi to solve their data management challenges. Following are a few use
cases across industry verticals:

Large-scale data analytics and data lake modernization

Telecom providers use Hudi to manage billions of call detail records
daily, optimizing storage through data clustering and cleaning while



improving query performance. Ad-tech companies process large
volumes of user interaction data for targeted advertising, using Hudi’s
deduplication features to reduce storage costs and enhance analytics.

Incremental processing and CDC

In supply chain management, global retailers use Hudi to maintain real-
time inventory views across stores during high-volume sales events.
Hudi’s incremental processing capabilities significantly reduce
processing time and resource consumption, enabling efficient
propagation of changes from source systems to the lakehouse platform.

Compliance, auditing, and data governance

Banks use Hudi to maintain auditable transaction trails, allowing state
views at any point in time for investigations and regulatory compliance.
For GDPR compliance, organizations leverage Hudi’s indexing
capabilities to efficiently locate and delete specific user data across
large datasets. Hudi’s ACID transactions and time travel features further
support comprehensive data governance practices.

Near-real-time analytics and stream processing

Ecommerce platforms use Hudi to process clickstream data, updating
product recommendations instantly. Energy companies analyze smart
meter data with Hudi, enabling low-latency monitoring of energy
consumption and quick anomaly detection. Hudi’s lakehouse mutability
feature handles bursty traffic and out-of-order events efficiently in these
dynamic environments.

Data-driven personalization and fraud detection

Content platforms use Hudi to aggregate and analyze user behavior
dynamically, facilitating near-real-time personalization. Financial
services companies use Hudi for fraud detection, quickly identifying
suspicious activities through near-real-time processing of large
transaction volumes.



Machine learning, AI, and data-intensive research

Autonomous vehicle companies use Hudi to manage massive datasets
for AI model training, enabling faster iterations and more accurate near-
real-time decision making. In genomics and climate science, researchers
use Hudi to process petabyte-scale datasets efficiently, reducing analysis
time and enabling more frequent model updates.

The key to supporting this broad spectrum of use cases lies in Hudi’s
sophisticated architecture, composed of several essential component groups.
In Chapters 8, 9, and 10, we’ll explore more real-world examples that
illustrate how Hudi’s novel features translate directly into platform
capabilities.

Summary
In this chapter, we rehashed the journey to the lakehouse, including Uber’s
own complex adventure from data warehouse to data lake, and eventually to
lakehouse (and namely, to Hudi).

We learned about what we mean when we say that Hudi is a lakehouse (it
extends a data lake with database and data warehouse capabilities). We took
a short tour through Hudi’s key features, including large-scale data
processing capabilities, ACID transaction support, and efficient upsert and
delete operations, and learned about use cases for Hudi across several
different industries including ecommerce, supply chain, financial services,
and of course, rideshare apps.

We introduced Hudi’s software stack, including its storage engine
components, programming API components, user access components, and
shared platform components, and learned that Hudi is designed to be highly
compatible with all of our favorite data platform services and query
engines.

With this foundation, let’s dive deeper into Hudi’s capabilities and
implementation strategies.



1  The term lakehouse was first coined by Michael Armbrust et al. in “Lakehouse: A New
Generation of Open Platforms That Unify Data Warehousing and Advanced Analytics” (CIDR
2021).
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Chapter 2. Getting Started with
Hudi

In Chapter 1, we explored the foundational concepts that make Apache
Hudi a compelling choice for modern data architectures. We explored how
data lakes have evolved into lakehouses, discussed Hudi’s position in this
ecosystem, and reviewed its high-level architecture, the Hudi stack, and key
feature highlights. While these concepts provide essential context, the best
way to truly understand Hudi’s capabilities is through hands-on experience.

This chapter shifts from theory to practice. Rather than simply listing
features, we’ll demonstrate how Hudi tables behave under different
configurations and operations, allowing you to observe firsthand how the
underlying table layout evolves as you perform common lakehouse
operations.

We’ll start with a simple purchase tracking table and use Apache Spark to
perform typical Create, Read, Update, and Delete (CRUD) operations. As
we execute these commands, we’ll examine the resulting changes to the
table’s physical structure, helping you develop an intuitive understanding of
how Hudi organizes and manages your data behind the scenes.

The chapter is organized into three progressive sections that build upon
each other. “Basic Operations” creates a Hudi table using the default Copy-
on-Write (COW) table type and explores fundamental CRUD operations.
As we execute SQL examples, we’ll examine how each operation affects
the table layout and learn core concepts like record keys, partitioning, and
the timeline internals.

“Choose a Table Type” introduces Hudi’s Merge-on-Read (MOR) table type
by re-creating our purchase table with this alternative configuration.
Comparing both table layouts side by side reveals the performance trade-



offs and practical scenarios where each approach excels, helping you
choose the right table type for your use cases.

Finally, “Advanced Usage” demonstrates additional SQL patterns for
working with lakehouse tables. These examples showcase operations like
CTAS, merge into, updates using nonrecord key fields, time travel queries,
and incremental queries—addressing complex requirements beyond simple
CRUD operations.

By the end of this chapter, you’ll have a solid understanding of how Hudi
tables work in practice and a strong foundation for the more advanced
topics covered in subsequent chapters.

Basic Operations
In this section, we’ll build a simple purchase table that serves as a source
of truth for tracking customer transactions in our lakehouse. This table
stores information about individual purchases, with each record
representing a single transaction containing essential details such as
customer identifier, purchase date, purchase amount, and status. Each
purchase is uniquely identified by purchase_id. The complete schema
is shown in Table 2-1.



Table 2-1. The purchase table schema

Column
name Data type Description

purchase_id STRING Unique identifier for the purchase.

customer_id BIGINT Identifies the customer who made the
purchase. This would be the unique
identifier in a customer table.

amount FLOAT The amount paid for the purchase.

status STRING Purchase status (e.g., COMPLETED, PEND
ING).

purchase_date STRING The date string when the purchase was
made (e.g., 2026-12-01).

We will use Hudi as the storage format for our purchase table. By
implementing the table as a Hudi table, execution and query engines can
natively understand the format and leverage Hudi’s advanced capabilities
such as time travel and incremental processing. You can work with Hudi
tables using different engines such as Spark, Apache Flink, Apache Hive,
Presto, Trino, and more. In the following sections, we will use Spark SQL
for all examples to showcase some common operations you can do on this
table.

Create the Table
Before creating our purchase table, we need to initialize a Spark SQL
session with Hudi support and then execute the CREATE TABLE
statement. This process will establish the table structure and generate the
initial directory layout for examining the Hudi table’s organization.



Assuming you have Spark 3.5 installed properly in your environment, you
can start the session with:

export HUDI_VERSION=1.1.0 
spark-sql \ 
--packages <dependency identifier for a Hudi Spark bundle jar> \ 
 

--conf \ 
spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSession
Extension\ 
--conf \ 
spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog
.HoodieCatalog\ 
--conf 
spark.serializer=org.apache.spark.serializer.KryoSerializer\ 
--conf 
spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar

Instructs Spark to download a Hudi-Spark bundle jar as a dependency
library according to the specified versions.

An example value of a Hudi-Spark bundle jar could be
org.apache.hudi:hudi-spark3.5-
bundle_2.13:$HUDI_VERSION. Hudi also offers bundle jars for other
engines, such as Flink and Trino. A bundle jar for your engine is the main
artifact that you will need to install in your application stack to work with
Hudi tables.

TIP
Several Spark configurations are included with the command; these are required for
working with Hudi tables. For development convenience, you can set them in Spark
configuration files like spark-defaults.conf to avoid repeating them each time.

Similarly, Hudi supports passing configurations via a central configuration file, hudi-
defaults.conf, located in the /etc/hudi/conf directory by default. You can use this to
define commonly used configs across all Hudi tables in your environment, reducing
config repetition and simplifying table setup across your lakehouse.

Now create the purchase table using our schema from Table 2-1:



CREATE TABLE purchase ( 
    purchase_id STRING, 
    customer_id BIGINT, 
    amount FLOAT, 
    status STRING, 
    purchase_date STRING 
) USING HUDI  
TBLPROPERTIES ( 
    primaryKey = 'purchase_id'  
) 
PARTITIONED BY (purchase_date)  
LOCATION '<base path to the Hudi table>'

Indicates that the table will follow the Hudi table format specification.
Represents the fields that ensure record uniqueness; also known as
record key fields.
Represents the fields used for organizing data into directories; also
known as partition fields.

We will discuss these settings and their related concepts in “Insert, Update,
Delete, and Fetch Records”. First, let’s execute the SQL and see the initial
Hudi table layout.

Initial table layout
After executing the SQL command, you’ll see a .hoodie/ directory with files
and subdirectories being created under the table’s base path:

<base path of the purchase table> 
└── .hoodie/  
    ├── .aux/ 
    ├── .schema/ 
    ├── .temp/ 
    ├── hoodie.properties  
    └── timeline/  
        └── history/ 

The .hoodie/ directory stores all sorts of metadata about the table.
Created when you specify USING HUDI, this directory implements the
Hudi format specification and instructs execution engines to treat the
table according to the specification rather than as plain data files.



The hoodie.properties file stores table-level properties used by both
writers and readers, including configurations for record key fields and
partition fields.
The timeline/ directory contains transaction logs that track all table
changes. These logs help enforce ACID properties for the Hudi table
and serve as the entry point for the Hudi reader and writer to interact
with the table. We refer to the timeline stored here as the active timeline.
The history/ directory stores compacted timeline entries. Hudi
implements an LSM-Tree structure to store the transaction log for the
table in the timeline—when entries in timeline/ exceed some
configurable threshold, older entries will be compacted and archived to
timeline/history/. This design provides performant timeline operations
while achieving storage efficiency. We refer to the timeline stored here
as the archived timeline.

NOTE
You should not manually modify hoodie.properties to update the table configurations—
this would corrupt the file as a checksum was computed by Hudi for validation. Only
Hudi writers or migration tools are allowed to update it with proper handling logic
implemented in the Hudi artifact like a Spark-Hudi bundle jar.

Record key fields
Records in a Hudi table can be uniquely identified by one or multiple fields.
In the absence of a user-configured key, Hudi will auto-generate highly
compressible record keys, which will be discussed further in Chapter 3. In
the CREATE TABLE statement described earlier, you used primaryKey
as shorthand for setting the record key fields; the corresponding entry stored
in hoodie.properties is hoodie.table.recordkey.fields,
which takes a comma-delimited list for the case of multiple fields jointly
defining the record uniqueness.

Record key fields are required for update and delete operations, which need
to act on matching records. You may omit this configuration when creating
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the table—this effectively makes the table append-only, allowing only insert
operations. Chapter 3 discusses writer capability in detail.

Partition fields
Partitioning improves read and write efficiency for lakehouse tables. The
SQL clause PARTITIONED BY indicates fields used for partitioning; the
corresponding entry stored in hoodie.properties is
hoodie.table.partition.fields.

When multiple partition fields exist, the partition path becomes nested
based on field order. For example, PARTITIONED BY (a, b) creates
partition paths like a=foo/b=bar/. Partition fields aren’t required for
Hudi tables—without them, all data files are stored under the table’s base
path.

NOTE
By default, partitioned tables created via Spark SQL use Hive-style partitioning with
paths formatted as <partition_ field_ name>=<partition_field_value>.
This ensures compatibility with Spark tables, which usually remove partition fields from
data files and use partition paths to show those fields. Because Hudi retains partition
fields in data files, you can disable this format by setting this in the TBLPROPERTIES
clause:

'hoodie.datasource.write.hive_style_partitioning'='false
'

By organizing the data into directories based on partition field values, query
engines can skip unmatching partitions when relevant predicates are
present. For example:

SELECT * FROM purchase WHERE purchase_date = '2026-12-01';

With purchase_date as the partition field, query engines scan only the
purchase_date=2026-12-01/ directory, saving time and compute cost. This



process is usually referred to as partition pruning.

However, partitioning isn’t always beneficial. Overpartitioning can lead to
creating many small files that hurt query performance. Partitioning also
reduces flexibility for predicates unrelated to partition fields. Hudi favors
powerful indexing techniques to augment partitioning—we’ll explore this
in Chapter 5.

Insert, Update, Delete, and Fetch Records
Let’s perform write operations by first inserting five records into the
purchase table using Spark SQL:

INSERT INTO purchase 
VALUES 
('purchase-1', 101, 21.9, 'COMPLETED', '2026-11-30'), 
('purchase-2', 101, 123.09, 'PENDING', '2026-11-30'), 
('purchase-3', 102, 390.15, 'PENDING', '2026-12-01'), 
('purchase-4', 103, 41.5, 'COMPLETED', '2026-12-01'), 
('purchase-5', 101, 98.3, 'COMPLETED', '2026-12-01');

Now we’ll update one of the purchase records based on the record key:

UPDATE purchase 
SET status = 'COMPLETED' 
WHERE purchase_id = 'purchase-2';

Next, we’ll delete another purchase record based on the record key:

DELETE FROM purchase 
WHERE purchase_id = 'purchase-3';

Lastly, let’s query the table and verify the records:

SELECT purchase_id, customer_id, amount, status, purchase_date 
FROM purchase ORDER BY purchase_id;

After running the SQL, we can see the output:



purchase_id     customer_id     amount  status          
purchase_date 
purchase-1      101             21.9    COMPLETED       2026-11-
30 
purchase-2      101             123.09  COMPLETED       2026-11-
30 
purchase-4      103             41.5    COMPLETED       2026-12-
01 
purchase-5      101             98.3    COMPLETED       2026-12-
01

The results are as expected: the status of purchase-2 was updated to
COMPLETED from the initial PENDING, and purchase-3 was deleted.

COW table layout after writes
With write operations on the table, we can explore more of the table layout
with new files being written to .hoodie/ and the partition paths based on
purchase_date:

<base path of the purchase table> 
├── .hoodie/ 
│   ├── hoodie.properties 
│   ├── metadata/  
│   └── timeline/ 
│       ├── 20261201022554235_20261201022556713.commit  
│       ├── 20261201022554235.commit.requested 
│       ├── 20261201022554235.inflight 
│       ├── 20261201022558299_20261201022558980.commit  
│       ├── 20261201022558299.commit.requested 
│       ├── 20261201022558299.inflight 
│       ├── 20261201022600486_20261201022600958.commit  
│       ├── 20261201022600486.commit.requested 
│       ├── 20261201022600486.inflight 
│       └── history/ 
├── purchase_date=2026-11-30/  
│   ├── .hoodie_partition_metadata  
│   ├── ffa5854b-9104-402b-8099-0482d0844554-0_0-2-
4_20261201022554235.parquet 
│   └── ffa5854b-9104-402b-8099-0482d0844554-0_0-4-
8_20261201022558299.parquet 
└── purchase_date=2026-12-01/ 
     ├── .hoodie_partition_metadata 
     ├── ba5a740b-0db6-4a21-902a-0eb397e4ab4f-0_0-7-



1_20261201022600486.parquet 
     └── ba5a740b-0db6-4a21-902a-0eb397e4ab4f-0_1-2-
5_20261201022554235.parquet

The home to the metadata table, an indexing subsystem within the Hudi
table; we will discuss this in more detail in Chapter 5.
Represents the first commit action in the timeline corresponding to the
insert operation. It contains starting and ending timestamps of the
change, indicating that the transactional action is complete.
Represents the second commit action in the timeline corresponding to
the update operation.
Represents the third commit action in the timeline corresponding to
the delete operation.
Partition path that stores all records in which purchase_date is
2026-11-30.
A file that contains metadata for the enclosing partition, useful for
partition discovery.

You may also notice that there are Apache Parquet files stored under each
partition path, with UUID as the prefix and timestamps matching the
timeline entries. We will explore these in “Base files and log files”. Let’s
first understand the files that form the Hudi timeline.

Timeline, actions, and instants
In Hudi, all changes performed on a table are recorded in a chronological
list of transaction logs called the timeline, located in the .hoodie/timeline/
directory. An action represents the actual change made to the table—the
transaction itself. Each file stored in the .hoodie/timeline/ directory
represents an instant of the timeline. One or more instants with the same
timestamp prefix constitute an action started at that timestamp.

The instant files follow a specific naming convention:

<action start timestamp>[_<action end timestamp>].<action type>[.
<action state>]



Action timestamps

The action start timestamp is a monotonically increasing value that
represents when the action starts. Similarly, the action end timestamp marks
the completion of the action, and it’ll only be there for completed actions.
The timestamps follow the format yyyyMMddHHmmssSSS. All action
timestamps used on the timeline follow TrueTime semantics and are
monotonically increasing globally across various processes involved.

ABOUT TRUETIME SEMANTICS
Google Spanner’s TrueTime API (introduced in this paper) overcomes
the challenges of time management in distributed systems by providing
a globally synchronized clock with a well-defined, bounded uncertainty.
Unlike traditional systems that suffer from clock drift and inconsistent
timelines, TrueTime provides every node with a consistent view of
time, guaranteed to be accurate within a small, known interval. This
capability is crucial for Spanner to achieve external consistency in
distributed transactions. It allows the system to assign timestamps with
confidence, ensuring that no past or future operations will have
conflicting timestamps, thereby solving long-standing problems of
clock synchronization and causality.

Action types

The action type represents what type of change was made to the table. In
the previous example, we see the action is a commit, representing a write
operation. There are other actions, such as deltacommit,
replacecommit, clean, and rollback. We will discuss
deltacommit in “Choose a Table Type”, where we talk about setting the
Hudi table type. We will introduce other actions as we encounter them in
subsequent chapters of the book.

Action states

https://oreil.ly/2mh1V


The action state indicates whether the action is requested, inflight, or
completed. Here is an example of a completed commit action that starts at
20261201022554235 and ends at 20261201022556713:

├── 20261201022554235_20261201022556713.commit 
├── 20261201022554235.commit.requested 
├── 20261201022554235.inflight

NOTE
Following are two naming conventions for the action instant files:

Completed actions do not include a state suffix like requested or inflight—they
simply end with the action type.

The commit action is unique in that its inflight instant omits the action type
after the timestamp.

An action always starts with the requested state, and then moves to inflight,
before reaching completion. Three instants under each of the three states
form a completed action. Without the completed instant—that is, with only
the requested instant or both requested and inflight instants—the action is
considered pending.

The timeline tracks the complete history of table changes and enables
features like time travel query and incremental query (introduced in
“Advanced Usage” and discussed further in Chapter 4). Understanding how
to read the timeline will help you debug data issues, understand the impact
of changes, and perform data audits.

Choose a Table Type
In the previous section, we created our purchase table using Hudi’s
default table type, Copy-on-Write, and explored fundamental CRUD
operations while observing the table’s physical structure. However, Hudi
offers two distinct table types, each optimized for different use cases and



performance characteristics. To fully understand your options and make
informed decisions about table configuration, we need to examine how the
alternative table type, Merge-on-Read, handles the same operations.

Create a Merge-on-Read Table
Let’s re-create the purchase table using the MOR table type. The table
creation SQL is nearly identical to our previous example, with only one
configuration change required:

CREATE TABLE purchase ( 
    purchase_id STRING, 
    customer_id BIGINT, 
    amount FLOAT, 
    status STRING, 
    purchase_date STRING 
) USING HUDI 
TBLPROPERTIES ( 
    type = 'mor',  
    primaryKey = 'purchase_id' 
) 
PARTITIONED BY (purchase_date) 
LOCATION '<base path to the Hudi table>'

The only difference for creating an MOR table is specifying the type
property. Note that for COW tables, you can explicitly set type =
'cow', though it’s optional because COW is the default.

After creating the MOR table, run the identical SQL commands from the
previous section to perform insert, update, delete, and select operations on
the new table. You’ll see the same query results as before, demonstrating
that both table types provide consistent data access despite their different
underlying storage strategies.

MOR Table’s Layout After Writes
Now let’s examine how the table’s physical structure differs when using the
MOR table type:



<base path of the purchase table> 
├── .hoodie/ 
│   ├── hoodie.properties 
│   ├── metadata/ 
│   └── timeline/ 
│       ├── 20261201040547825_20261201040549713.deltacommit  
│       ├── 20261201040547825.deltacommit.inflight 
│       ├── 20261201040547825.deltacommit.requested 
│       ├── 20261201040551271_20261201040551832.deltacommit  
│       ├── 20261201040551271.deltacommit.inflight 
│       ├── 20261201040551271.deltacommit.requested 
│       ├── 20261201040553967_20261201040554439.deltacommit  
│       ├── 20261201040553967.deltacommit.inflight 
│       ├── 20261201040553967.deltacommit.requested 
│       └── history/ 
├── purchase_date=2026-11-30/  
│   ├── .d4bd5df5-f5dd-411c-bb77-a1dbf02ef0fd-
0_20261201040551271.log.1_0-55-97 
│   ├── .hoodie_partition_metadata 
│   └── d4bd5df5-f5dd-411c-bb77-a1dbf02ef0fd-0_0-31-
46_20261201040547825.parquet 
└── purchase_date=2026-12-01/ 
     ├── .06be74aa-6d0e-4406-bc38-981ed3e0d7e4-
0_20261201040553967.log.1_0-79-139 
     ├── .hoodie_partition_metadata 
     └── 06be74aa-6d0e-4406-bc38-981ed3e0d7e4-0_1-31-
47_20261201040547825.parquet

This represents the first deltacommit action in the timeline,
corresponding to the insert operation.
This represents the second deltacommit action in the timeline,
corresponding to the update operation.
This represents the third deltacommit action in the timeline,
corresponding to the delete operation.
Under this partition path, notice the presence of both a Parquet file and
a Hudi log file (with a .log in the extension) sharing the same UUID
prefix after a leading dot.

The timeline instants in an MOR table follow the same naming conventions
introduced in the previous section, but they use deltacommit actions
instead of commit actions to represent write operations. This distinction



signifies that the corresponding data written to the table can be stored in
either Parquet files (as configured) or Hudi log files—a key difference that
we’ll explore next to understand the design rationale behind using these file
formats.

Base files and log files
A base file in Hudi stores the primary data of the table optimized for
analytical queries. Base files are in columnar format (e.g., Parquet or
Apache ORC) or indexed formatted files (e.g., HFile), which can be
configured when creating the table (default is Parquet). We saw base files in
the table layout from the previous section. Now let’s explore their naming
convention in detail:

<file ID>_<write token>_<action start timestamp>.<base file 
extension>

The naming components serve specific purposes:

File ID

Identifies and groups files sharing the same ID within a Hudi table

Write token

A unique string for every attempt to write the file, enabling proper
handling of failures and retries

Action start timestamp

Associates the file with an action in the timeline via its start timestamp

Base file extension

Denotes the file format (.parquet, .orc, .hfile, etc.)

A log file is a native Hudi-formatted file encoded as a series of data blocks.
The actual data bytes are serialized into Apache Avro, Parquet, or HFile



format depending on your configuration, with Avro as the default. Log files
follow this naming convention:

.<file ID>_<action start timestamp>.log.<sequence number>_<write 
token>

Each component in the log file name has a specific role:

File ID

Identifies and groups files sharing the same ID within a Hudi table

Action start timestamp

Associates the file with an action in the timeline via its start timestamp

Sequence number

Indicates the order of a log file among other log files written during the
same action

Write token

A unique string for every attempt to write the file, enabling proper
handling of failures and retries

Action start timestamps serve as the key mechanism for associating
transactional actions in the timeline with their corresponding physical files.
This coordination en ables Hudi writers and readers to understand which
actions are currently in progress and determine the correct files to write to
or read from.

File IDs provide the essential linkage between different base files and log
files, allowing writers and readers to locate and process the appropriate files
for relevant records. We’ll discuss the design and concepts around file ID
next.

File groups and file slices



Now that we understand the individual file types in Hudi, we need to
examine how these files are organized into logical structures that enable
efficient data management and querying. Hudi employs a hierarchical
organization system that groups related files together and tracks their
evolution over time (Figure 2-1).

Figure 2-1. File group and file slices in an MOR table

Data files—whether base files or log files—are organized into logical
concepts called file groups, each uniquely identified by a file ID. This file
ID serves as the common identifier that links related base files and log files
together, forming a cohesive unit for data storage and retrieval.



The relationship between records and file groups is fundamental to Hudi’s
design: each record in the table is identified by a unique key and mapped to
a single file group at any given time. This one-to-one mapping allows the
Hudi reader and writer to efficiently locate records by determining which
file group contains them, reducing the file scanning space.

Within each file group, data files are further organized into file slices. A file
slice represents the state of all records in the file group at a specific point in
time and contains, at most, one base file and optionally a list of log files.
Let’s revisit the purchase tables created in earlier sections to better
understand these concepts.

File slices in COW tables

In the COW purchase table, we only see base files created under each
partition. In this example, there is a file group containing multiple file
slices, each consisting of one base file:

.hoodie/timeline/ 
├── 20261201022554235_20261201022556713.commit  
├── 20261201022558299_20261201022558980.commit  
purchase_date=2026-11-30/ 
├── ffa5854b-9104-402b-8099-0482d0844554-0_0-2-
3_20261201022554235.parquet  
└── ffa5854b-9104-402b-8099-0482d0844554-0_0-4-
8_20261201022558299.parquet 

The commit action that performed the insert operation
The commit action that performed the update operation
A file slice that contains only one base file created by the commit
action at time 20261201022554235
A file slice that contains only one base file created by the commit
action at time 20261201022558299

These two file slices belong to the same file group with file ID
ffa5854b-9104-402b-8099-0482d0844554-0, and they each
represent a version of the file group at the corresponding associated time,



with the more recent version containing the updated record along with all
other records.

NOTE
Note that there is no physical structure to place data files into file slices and file slices
into file groups—they are all logical groupings. The physical files are simply stored on
the same path—either a partition path or the table’s base path.

File slices in MOR tables

In the MOR purchase table, we see base files and log files created under
each partition. In this example, there is a file group containing one file slice,
consisting of one base file and one log file:

.hoodie/timeline/ 
├── 20261201040547825_20261201040549713.deltacommit  
├── 20261201040551271_20261201040551832.deltacommit  
purchase_date=2026-11-30/ 
├── .d4bd5df5-f5dd-411c-bb77-a1dbf02ef0fd-
0_20261201040551271.log.1_0-5-9  
└── d4bd5df5-f5dd-411c-bb77-a1dbf02ef0fd-0_0-3-
4_20261201040547825.parquet 

The deltacommit action that performed the insert operation
The deltacommit action that performed the update operation
A log file that belongs to the file slice created at time
20261201040547825, while the log file itself was created during the
deltacommit started at 20261201040551271
A base file that belongs to the file slice created at time
20261201040547825

The file slice belongs to a file group with file ID d4bd5df5-f5dd-
411c-bb77-a1dbf02ef0fd-0. The log file contains only the updated
record encoded in Hudi log format, while the base file contains all the
records created by the insert operation.



File slicing

File slicing is the process of determining which files belong to which file
slice within a file group. In MOR tables, this is more complex than in COW
tables. Because COW tables contain no log files, each base file stores all the
records mapped to the file group and forms a file slice associated with the
commit action start time.

In MOR tables, however, log files may only contain a subset of the records
mapped to the file group, requiring us to identify the relevant base file to
form a complete file slice. The logic involves finding the most recent base
file (based on its action start timestamp) that is earlier than the log file’s
action end time.

In our purchase table example, the log file .d4bd5df5-f5dd-411c-
bb77-a1dbf02ef0fd-0_20261201040551271.log.1_0-55-
97 is associated with the deltacommit action that started at
20261201040551271 and ended at 20261201040551832. The target
base file to associate with is d4bd5df5-f5dd-411c-bb77-
a1dbf02ef0fd-0_0-31-46_20261201040547825.parquet, as
its action start time is earlier than the log file’s deltacommit end time
20261201040551832 and it is the most recent base file (no other base
file exists) in that file group.

You might wonder why we introduce all these complexities when COW
offers apparent simplicity. In the next section, we’ll discuss the different
characteristics between these two table types and understand the design
rationale behind these concepts and grouping logic.

Copy-on-Write Versus Merge-on-Read
Both COW and MOR table types address the fundamental challenge of
balancing write performance against read performance in lakehouse
environments. While they share the same logical organization concepts of
file groups and file slices, their approaches to handling updates differ
significantly, leading to distinct performance characteristics and optimal use
cases.



Understanding how each table type processes updates helps clarify when to
choose one approach over the other. The key lies in recognizing that COW
optimizes for consistent read performance by absorbing update costs during
writes, while MOR optimizes for fast writes by deferring merge costs to
read time or compaction processes.

COW table’s update process
In COW tables, record updates or deletes trigger the creation of new base
files in a file group, with no log files written. When an update operation
occurs, Hudi identifies all base files containing records that need
modification and completely rewrites these files with the updated data.

Here’s how the COW update process works (Figure 2-2):

1. Identify the target file groups: For each record to be updated, Hudi
uses the metadata table to locate the specific file group containing
that record.

2. Merge the records: After locating the file group, the existing
records will be extracted from the latest base file and merged with
the incoming updates; all unchanged records will be preserved.

3. Write the data: A completely new base file is written as a new file
slice in the file group, containing both updated and unchanged
records.

4. Write the metadata: Metadata about all the newly written files is
written to the metadata table.

5. Publish to the metadata table’s timeline: A new deltacommit
action is recorded in the metadata table’s timeline.

6. Publish to the data table’s timeline: A new commit action is
recorded in the data table’s timeline, indicating the transaction is
complete.



Figure 2-2. COW table’s update process

This approach ensures that every query reads only base files, providing
excellent and predictable read performance. However, the write



amplification can be significant—updating a single record in a 1 GB
Parquet file requires rewriting the entire file.

MOR table’s update process
MOR tables balance write and read performance by using lightweight log
files along with base files and running periodic compaction. Updates and
deletes are initially written to log files, avoiding the immediate cost of
rewriting base files.

The MOR update process follows these steps (Figure 2-3):

1. Identify the target file group: Similar to COW, for each record to
be updated, Hudi uses the metadata table to locate the specific file
group containing that record.

2. Write the data: Instead of rewriting the base file, updates are
appended to log files within the file group.

3. Write the metadata: Metadata about all the newly written files is
written to the metadata table.

4. Publish to the metadata table’s timeline: A new deltacommit
action is recorded in the metadata table’s timeline.

5. Publish to the data table’s timeline: A new deltacommit action
is recorded in the data table’s timeline, indicating the transaction is
complete.

6. Accumulate the changes: Subsequent update operations continue
writing to log files, building up a series of changes over time.

7. Compact the files: Periodically, a compaction process merges the
accumulated log files with the base file to create a new base file as
a new file slice.



NOTE
Compaction is one of the Hudi table services that manages the merging of log files with
base files to maintain optimal query performance in MOR tables. Compaction strategies,
scheduling, and configuration options will be covered in detail in Chapter 6.





Figure 2-3. MOR table’s update process

Data updates and deletes are written to log files in the row-based Hudi log
format, and these changes are merged dynamically with base files during
query execution or compaction. This approach dramatically reduces write
amplification because only the changed records need to be written, but it
introduces overhead during reads because the query engine must merge
base files and log files to produce the most up-to-date results.

The trade-offs
The choice between COW and MOR involves fundamental trade-offs that
affect both operational characteristics and use case suitability. Table 2-2
summarizes the high-level trade-offs between these two table types.



Table 2-2. Trade-offs between COW and MOR

Trade-off COW MOR

Write latency Higher Lower

Query latency Lower Higher

Update cost Higher (rewrite entire base
files)

Lower (append to log
files)

Read
amplification

None (reads only base
files)

O(records_changed) for
target file groups

Write
amplification

O(records_of_target_file

_groups) for given update
pattern

O(records_changed) for
target file groups

Base file size Needs to be smaller to
avoid high update (I/O)
cost

Can be larger because
update cost is low and
amortized

Operational
complexity

Lower (simpler file
structure and behavior)

Higher (requires
compaction
management)

We can further infer that COW excels for:

Read-heavy analytical workloads and OLAP scans where query
performance is paramount

Static or slowly changing reference tables that rarely require
updates

Batch ETL pipelines that process data in large, infrequent batches



Scenarios where operational simplicity is preferred over write
optimization

And MOR is ideal for:

Incremental pipelines that promote data through bronze–silver–
gold layers efficiently, by processing only new or changed records
without full table rewrites

Change data capture (CDC) pipelines that need to keep up with
high-frequency updates from upstream systems

Streaming data ingestion requiring minute-level latency for data
availability

Tables with frequent updates and deletes, such as user activity
tracking or inventory management

Hybrid batch and streaming workloads that serve both low-latency
operational queries and batch analytics

The evolution of data processing requirements—from pure batch analytics
toward real-time streaming—has made MOR tables increasingly popular.
As the Hudi project evolves and merging costs for MOR tables continue to
be optimized, MOR is becoming the preferred table type for most workload
scenarios.

Advanced Usage
While the previous sections demonstrated fundamental operations such as
basic CRUD, real-world lakehouse environments often require handling
more complex logic. This section showcases advanced SQL usage that
addresses complex requirements beyond basic insert, update, and delete
scenarios.

Create Table As Select



The CREATE TABLE AS SELECT (CTAS) statement allows you to
create a new Hudi table from the results of a query in a single operation.
This is particularly useful for migrating data from other formats or creating
derived tables efficiently:

-- Create a summary Hudi table from the existing purchase table 
CREATE TABLE purchase_summary  
USING HUDI  
TBLPROPERTIES ( 
    primaryKey = 'customer_id,purchase_date'  
) 
AS SELECT  
    customer_id, 
    purchase_date, 
    ROUND(SUM(amount), 2) as total_amount,  
    COUNT(*) as purchase_count  
FROM purchase 
GROUP BY customer_id, purchase_date;

Specifies the table format as Hudi for the purchase_summary table
Uses composite record key fields
Sums the amount to get the total amount for each customer and
purchase date
Counts the purchases for each customer and purchase date

Run a SELECT statement to check the results:

SELECT customer_id, purchase_date, total_amount, purchase_count 
FROM purchase_summary 
ORDER BY customer_id, purchase_date;

Output:

customer_id         purchase_date   total_amount     
purchase_count 
101                 2026-11-30      144.99           2 
101                 2026-12-01      98.3             1 
103                 2026-12-01      41.5             1

Merge Source Data into the Table



The MERGE INTO statement enables flexible upsert operations by joining
source data with the target table and performing different actions based on
matching conditions:

-- Create a staging table with updates 
CREATE TABLE purchase_updates (  
    purchase_id STRING, 
    customer_id BIGINT, 
    amount FLOAT, 
    status STRING, 
    purchase_date STRING 
) USING PARQUET; 
 
-- Merge updates into the purchase table 
MERGE INTO purchase t 
USING ( 
    SELECT purchase_id, customer_id, amount, status, 
purchase_date  
    FROM purchase_updates 
) s 
ON t.purchase_id = s.purchase_id  
WHEN MATCHED THEN  
    UPDATE SET t.amount = s.amount, t.status = s.status  
WHEN NOT MATCHED THEN  
    INSERT (purchase_id, customer_id, amount, status, 
purchase_date)  
    VALUES (s.purchase_id, s.customer_id, s.amount, s.status, 
s.purchase_date);

Creates a staging table containing new and updated purchase records to
be merged into the main table
Defines the join condition based on purchase_id to match records
between source and target tables
Updates existing records when a match is found, modifying only the
amount and status fields while preserving other data
Inserts new records when no match is found, creating completely new
entries in the target table

Update and Delete Using Nonrecord Key Fields



Hudi supports update and delete operations using fields other than the
primary key, enabling flexible data management based on business logic.

Run the following SQL to perform an update with predicates on
customer_id and amount on the purchase table we’ve worked on in
previous sections:

-- Update the purchases based on customer_id and amount 
UPDATE purchase  
SET status = 'PENDING'  
WHERE customer_id = 101 AND amount > 100.0; 

Predicates are not on any record key field.

Run a SELECT statement to check the results:

SELECT purchase_id, customer_id, amount, status, purchase_date 
FROM purchase 
ORDER BY purchase_id;

Output:

purchase_id     customer_id     amount  status       
purchase_date 
purchase-1      101             21.9    COMPLETED    2026-11-30 
purchase-2      101             123.09  PENDING      2026-11-30 
 

purchase-4      103             41.5    COMPLETED    2026-12-01 
purchase-5      101             98.3    COMPLETED    2026-12-01

The status of purchase-2 was updated to PENDING.

Run the following SQL to perform a delete with predicates on status and
purchase_date on the purchase table:

-- Delete purchases based on status and date criteria 
DELETE FROM purchase  
WHERE status = 'PENDING'  
AND purchase_date BETWEEN '2026-11-01' AND '2026-11-30'; 



Predicates are not on any record key field.

Run a SELECT statement to check the results:

SELECT purchase_id, customer_id, amount, status, purchase_date 
FROM purchase 
ORDER BY purchase_id;

Output:

purchase_id     customer_id     amount  status          
purchase_date 
purchase-1      101             21.9    COMPLETED       2026-11-
30 
purchase-4      103             41.5    COMPLETED       2026-12-
01 
purchase-5      101             98.3    COMPLETED       2026-12-
01

From the output, we can see that the purchase-2 that matches the
predicates was deleted.

Time Travel Query
Time travel queries allow you to access historical versions of your data,
enabling auditing, debugging, and analysis of how data has evolved over
time. This capability leverages Hudi’s timeline design and file slice
versioning to retain and retrieve record versions that match the given
timestamp. Chapter 4 will explore time travel queries and other query types
in greater detail.

Following is an example of a time travel query:

-- Query the table as it existed at a specific commit time 
SELECT purchase_id, customer_id, amount, status  
FROM purchase TIMESTAMP AS OF '20261201040547825'  
WHERE customer_id = 101; 
 
-- Query using a readable timestamp format 
SELECT customer_id, COUNT(*) as purchase_count 



FROM purchase TIMESTAMP AS OF '2026-12-01 10:30:00'  
GROUP BY customer_id;

The syntax TIMESTAMP AS OF is for setting the past time of
querying. The format can be the same as the timeline timestamp format.
The syntax TIMESTAMP AS OF also accepts a more commonly used
timestamp format.

Incremental Query
Incremental queries retrieve only the data that has changed since a specific
point in time, enabling efficient incremental processing pipelines that
dramatically reduce compute costs. This capability leverages Hudi’s
timeline and file group organization to efficiently locate changed records.
Chapter 4 will cover incremental queries and the benefits in detail.

Following is an example of incremental queries:

-- Retrieve only the changed records since a specific timestamp 
SELECT * 
FROM hudi_table_changes('purchase', 'latest_state', 
'20261201040547825');  
 
-- Retrieve only the changed records since a specific timestamp, 
using CDC mode 
SELECT * 
FROM hudi_table_changes('purchase', 'cdc', 'earliest', 
'20260516000000'); 

The table-valued function hudi_table_changes takes in
parameters for running incremental queries.
The table-valued function hudi_table_changes takes in
parameters for running incremental queries in CDC mode that return
before and/or after images of the changed records.

These advanced SQL usages demonstrate Hudi’s power in handling
complex lakehouse scenarios. From efficient data migration using CTAS to
building CDC pipelines with incremental queries, these operations provide
the foundation for sophisticated data processing workflows that combine



the best of traditional database capabilities with the scale and flexibility of
data lakes.

Summary
This chapter transformed theoretical knowledge into practical
understanding through hands-on exploration of Hudi tables. By working
with a purchase tracking table, we observed how table layouts evolve
during common lakehouse operations. The key concepts covered include:

Table layouts and properties

We explored the structure of the .hoodie/ directory and introduced key
table properties like record key fields and partition fields.

Timeline, actions, and instants

We examined the entries stored under .hoodie/timeline/ and explained
how timestamped actions like the commit and deltacommit
transition instant states enable ACID guarantees and advanced query
capabilities.

Base files, log files, file groups, and file slices

We explained how base files are optimized for reads while log files
contain incremental changes, and how these files are logically organized
into file groups and file slices for efficient data management.

Table type comparison

We compared COW and MOR table types, revealing how COW
optimizes for read performance through file rewriting while MOR
prioritizes write performance using log files to absorb frequent updates.

We also demonstrated advanced SQL usage including CTAS, MERGE
INTO statements, and updates using nonrecord key fields. Time travel



queries and incremental queries showcase Hudi’s unique value proposition
for auditing and efficient data processing.

The concepts introduced here form essential foundations for upcoming
chapters: timeline management and file organization underpin the write
operations detailed in Chapter 3, while our SQL examples serve as a warm-
up for the comprehensive query capabilities explored in Chapter 4. The
metadata/ directory glimpsed in our table layouts will be thoroughly
examined in Chapter 5, and the MOR compaction process briefly
mentioned here will receive detailed coverage in Chapter 6.



Chapter 3. Writing to Hudi

The write operation is a critical function in any data lakehouse, directly
shaping its reliability and performance. A deep understanding of the Hudi
writer’s internal behavior—and which of its many features to leverage for
your specific use case—is therefore essential. Building upon the
foundational concepts of table layouts, timeline structures, and table type
trade-offs from Chapter 2, this chapter combines deep dives on internals
and usage examples, serving as your go-to guide to understanding write
operations in Apache Hudi.

This chapter is organized into three sections to provide a comprehensive
exploration of Hudi’s write capabilities. “Breaking Down the Write Flow”
dissects the end-to-end Hudi write process. We will trace each step of the
journey, from data preparation to the final transactional commit, revealing
the internal mechanics that ensure data correctness and efficiency.

To ground our discussion in practical application, “Exploring Write
Operations” introduces a real-world use case for a data provider,
DataCentral, Inc., which specializes in analyzing sensor data from millions
of Internet of Things (IoT) devices. We will demonstrate all of Hudi’s write
operations—including upsert, delete, insert, and bulk_insert
—showing you how to solve common data manipulation challenges in a
real-world context.

The power and efficiency of Hudi’s core write operations stem from several
important features designed to handle complex lakehouse data patterns. To
avoid distracting from the main write flow, we explore these more involved
features in “Highlighting Noteworthy Features.”

By completing this chapter, you will be able to effectively write data to
Hudi. You will gain a clear understanding of the write flow, learn how to
apply various write operations for different scenarios, and know how to use
advanced features to build efficient and reliable data lakehouse pipelines.



Breaking Down the Write Flow
To effectively use Hudi for building data lakehouses, a clear understanding
of its internal write flow is essential. This section explains the Hudi write
flow step by step, guiding you through each stage from commit initiation,
through record preparation and data writing, to commit finalization.

Figure 3-1 provides an overview of the Hudi write flow, which consists of
both main and optional steps.



Figure 3-1. Hudi write flow overview

The main steps encompass processes common to most write operation
types, while the optional steps are applicable only to specific types. In the



following sections, we will use upsert, the default write operation, as an
example to walk through all these steps.

NOTE
When we refer to “commit” in this context, we are referencing the transactional commit
concept commonly used in databases. This concept also applies to Hudi tables, where
each transactional action is sometimes referred to as a commit. It is important not to
confuse this broader transactional “commit” with the specific commit action recorded
on the Hudi timeline (as introduced in Chapter 2).

Start Commit
The start commit step marks the beginning of any Hudi write operation,
with the Hudi write client serving as the primary entry point. This client,
which is engine compatible (e.g., SparkRDDWriteClient for Apache
Spark, HoodieFlinkWriteClient for Apache Flink, or
HoodieJavaWriteClient for Apache Kafka Connect), first ensures a
clean slate for the upcoming write. It does this by checking the table’s
timeline for any previously failed actions and performing a necessary
rollback. Once these preliminary checks are complete, the client initiates
the write by creating a “requested” commit (or deltacommit, if it’s
Merge-on-Read [MOR]) action on the timeline. This stage also typically
involves reconciling user-provided configurations with existing Hudi table
properties, passing the finalized configuration set to the client for
subsequent operations.

Prepare Records
This step involves making necessary transformations to the incoming data.
Before delving into these transformations, it’s important to understand
HoodieRecord, an internal Hudi data structure. As illustrated in
Figure 3-2, HoodieRecord is designed to encapsulate incoming records
with additional metadata, including the record key, partition path, ordering
value, and both its current and new locations.



Figure 3-2. HoodieRecord wraps the original data with additional metadata

The HoodieKey field contains the record key and partition path, which
together uniquely identify a record within a Hudi table. The ordering value
field determines the order of records with the same HoodieKey. Storing
this information along with the record data is critical for many use cases
that rely on ordering. For example, when replicating database tables using
change data capture (CDC), records may share the same primary key. An



ordering value from the source is therefore required to identify the most
recent record and ensure correct replication.

Merging duplicate records
The records with the same HoodieKey are considered duplicates. In the
case of processing CDC records, which usually contain duplicates, we need
to merge them properly based on the ordering values such that the latest
record version is captured. Merging at this step before writing to storage
reduces the workload for the subsequent write steps.

For upsert and delete operations, the step of merging duplicate
records is performed by default during the preparation step. In operations
like insert or bulk_insert, merging is not performed by default, as
their write semantic is designed for append-only writes.

To handle various use cases that require merging, Hudi supports merge
modes to define the merging behavior. This topic will be discussed in
“Merge Modes”.

Indexing
The next optional step during record preparation is indexing, which is about
locating incoming records in the table for any matching existing records
such that they can be identified as updating records or new records.

The HoodieRecordLocation information is vital for pinpointing
record locations. Within a Hudi table, a record’s location can be determined
by first using the partition path and file ID to identify its file group, then the
action timestamp to pinpoint the specific file slice within that file group,
and finally the position information to quickly locate the record within the
containing base file. During indexing, the current
HoodieRecordLocation field (shown in Figure 3-2) will be populated
to indicate where the record exists at the time of this write.

For upsert and delete operations, Hudi writers must perform indexing,
because we need to have new record changes written to the same file groups
where those existing records reside, adhering to Hudi’s file group and file



slice design. This design ensures that different versions of the same records
live in distinct file slices, with action timestamps associating versioning
with write time. For write operations like insert or bulk_insert that
have append-only semantics, indexing is not necessary and will be skipped.
In both databases and data lakehouses, indexing is a very broad and yet
critical technique for improving write and read performance. In Chapter 5,
we will delve into this topic in detail.

Partition Records
After records are prepared, the next step is to partition them. This involves
splitting the incoming records into reasonably sized in-memory partitions
for distributed processing. For upsert and insert operations, the
partitioning process allows a bin-packing algorithm to distribute the records
such that it can address small-file issues and maintain a performant table
layout. We will discuss the small-file handling feature in more detail in
“Small-file handling for insert and upsert operations”.

Write to Storage
At this step, records are ready to be written to file slices on storage. Hudi
uses different “write handle” operations to process updates and inserts
distinctively. For example, in the case of a Copy-on-Write (COW) table, the
“write handle” operation for inserts may create a new file group to host the
new records. For updates, the “write handle” operation needs to read the
located file slices and merge the existing records with the incoming updates,
and then it writes the merged records to new file slices in their
corresponding file group. The “write handle” operations also report back
the write-related metadata and statistics for finalizing the transaction.

Commit Changes
In this final step, the Hudi writer undertakes multiple tasks to correctly
conclude the transactional action.



The metadata table, as the indexing subsystem of the data table (covered in
Chapter 5), will be updated as part of the same write transaction. Metadata
about the write operation will be saved, which synchronizes the index data
with the latest records to ensure data consistency and correctness.

The Hudi writer checks for data conflicts if concurrent writers are
configured for the table (covered in Chapter 7). The metadata and statistics
reported by “write handle” operations will be aggregated and used to
generate an overall “write report,” which is subsequently persisted in the
completed action instant on the Hudi timeline.

Hudi creates marker files before writing data to storage. Marker files are
empty files used to track the base files and log files being written during the
operation. If a write fails halfway, the marker files will be left in a directory
under .hoodie/.temp/, which facilitates cleaning up the residual files. When
the write is successful (the action appears as complete on the timeline), the
marker files will be deleted as a post-commit task. The marker files are also
useful for implementing early conflict detection in multiwriter scenarios,
which will be discussed in Chapter 7.

As we briefly mentioned in Chapter 2, the Hudi timeline implements an
LSM-tree structure to store the action instants. When the number of action
instants exceeds a configurable threshold, older instants will be archived to
the timeline/history/ directory. As a post-commit task, the archiving service
will be triggered when the threshold is reached. This will bound the number
of action instants in the active timeline, maintaining efficiency for writes
and reads.

If you’re using Spark as the execution engine, you can run pre-commit
validation in this step. You can add hoodie.precommit.validators
in your writer configuration with a value such as
org.apache.hudi.client.validator.SqlQueryEqualityP
re Com mitValidator. Along with other related configurations, the Hudi
writer will execute SQL commands and validate the results as configured.
Refer to the Hudi documentation for more details.

https://oreil.ly/gR4d3
https://oreil.ly/sLkP9


Summarize the Upsert Flow
Having discussed each step in the writer flow using upsert as an
example, we will now summarize the entire process (see Figure 3-3 for a
comprehensive diagram):

1. Start the commit: A Hudi write client initiates the commit process
by first ensuring a clean state on the table’s timeline, rolling back
any failed actions. It then creates a “requested” instant (either a
commit for COW or a deltacommit for MOR) on the timeline.

2. Prepare the records: Incoming records are prepared for writing.
This involves wrapping them in the HoodieRecord model,
merging records based on their HoodieKey and ordering values,
and performing indexing.

3. Partition the records: Prepared records are then partitioned in
memory for distributed processing. The small-file handling
mechanism will be used for upsert and insert operations to
keep the table storage layout optimized.

4. Write to storage: Hudi uses different kinds of “write handle”
operations to process partitioned records and perform I/O to the
storage.

5. Commit the changes: In this final step, the Hudi writer performs
various tasks to complete the transaction and bookkeep the table.





Figure 3-3. Hudi upsert flow on a COW table

Exploring Write Operations
In the previous section, we explored the detailed internal workings of
Hudi’s write operations, using the default upsert operation as a
representative example. While upsert is fundamental, Hudi offers a
variety of other write operation types. In this section, we will shift to a more
practical approach, demonstrating these operations with Spark SQL code
examples and explaining their behaviors and related concepts.

Our examples in this section will be based on an imagined company,
DataCentral, Inc. DataCentral is a data provider specializing in collecting
sensor data from IoT devices and offering analytics services through its
platform. The primary table used by its data collection module is
sensor_data, which has the schema shown in Table 3-1.



Table 3-1. The schema of sensor_data used by DataCentral, Inc.

Field name Data type Description

id STRING A unique identifier for the sensor
device

type STRING The type of sensor data collected (e.g.,
TEMP for temperature, HUM for
humidity, and PRES for pressure)

ts BIGINT The epoch timestamp in milliseconds
when the sensor data was sampled

emit_ts BIGINT The epoch timestamp in milliseconds
when the sensor data was emitted

value FLOAT The sampled sensor data value

org_id STRING A unique identifier for the
organization that owns the sensor
device

The subsequent sections will focus on using this table to illustrate various
scenarios that can occur during sensor data processing.

Define Table Properties
Let’s first create the sensor_data table according to the schema
described in Table 3-1:

CREATE TABLE sensor_data ( 
    id STRING, 
    type STRING, 
    ts BIGINT, 
    emit_ts BIGINT, 
    value FLOAT, 



    org_id STRING 
) USING HUDI 
TBLPROPERTIES ( 
    type = 'mor',  
    primaryKey = 'id,type,ts',  
    preCombineField = 'emit_ts'  
) 
PARTITIONED BY (org_id); 

We choose MOR as the table type to handle high-throughput writes
from a large number of IoT devices.
We define a composite record key based on the sensor ID, sensor data
type, and sampling timestamp to uniquely identify each sensor data
record.
We use the emit timestamp (emit_ts) to determine the order of
records via the preCombineField property, which is crucial for
handling late-arriving or out-of-order data.
We partition the table by org_id to optimize queries that commonly
filter data by the organization that owns the sensor devices.

When working with Hudi tables that allow updates or deletes, it’s essential
to establish a clear logic for ordering records that share the same record
keys. This is critical because when an update occurs, Hudi must select the
correct version of the record based on this order. Similarly, for delete
operations, Hudi uses this ordering to determine if the incoming delete
request is newer, in which case the deletion proceeds; otherwise, the delete
should be skipped. The pre-combine field, also referred to as the ordering
field, allows you to designate a specific field for comparison, where a
greater value signifies a more recent record version.

TIP
Since Hudi 1.1, you can specify multiple fields as ordering fields. Hudi will use these
fields in the specified order for comparison, moving to the next field only if the
preceding ones are identical, to jointly determine the record order.



However, simply picking the newest version isn’t always sufficient.
Depending on business needs, you might want to implement custom
merging logic. This could involve selectively updating only certain fields or
performing calculations like summing or averaging values from both old
and new records. The merging behavior of an incoming record with an
existing one is determined by how you configure the merge mode, a topic
that will be discussed later in this chapter. For the examples in this section,
just keep in mind that emit_ts dictates the record order; thus, during data
correction processes where sensors might emit records with the same data
keys but different values at a later time, Hudi will select the record with the
greater emit_ts as the most current version.

Use INSERT INTO
Typically, we append new sensor data to the table. Periodically, when
sensors emit corrected data, we perform an upsert operation. This ensures
that existing records are updated and that new records are inserted. Hudi
supports both insert and upsert semantics through three distinct write
operations: insert, bulk_insert, and upsert. All these operations
can be executed using the standard SQL INSERT INTO syntax.

Let’s write an initial batch of data to the sensor_data table using the
insert operation:

SET hoodie.spark.sql.insert.into.operation=insert;  
 
INSERT INTO sensor_data VALUES 
('SENSOR_001', 'TEMP', 1797649200010, 1797649200050, 296.65,  
'ORG_A'), 
('SENSOR_001', 'HUM',  1797649200020, 1797649200050, 65.2,    
'ORG_A'), 
('SENSOR_001', 'PRES', 1797649200030, 1797649200050, 1013.25, 
'ORG_A'), 
('SENSOR_002', 'TEMP', 1797649200040, 1797649200100, 297.25,  
'ORG_B'), 
('SENSOR_002', 'HUM',  1797649200050, 1797649200100, 62.8,    
'ORG_B');

Specifies the write operation for INSERT INTO statements



This example uses the insert operation to write five sensor data records
into two partitions, one for organization A and one for organization B. The
sensors detect three types of data: temperature, humidity, and pressure. As
you may have noticed, despite being sampled at different timestamps for
different data types, the records for each sensor were emitted at the same
timestamp, which is later than the sampling time.

To achieve the same result using the bulk_insert operation, you can set
the configuration as follows before executing the same INSERT INTO
command:

SET hoodie.spark.sql.insert.into.operation=bulk_insert;

Insert versus bulk insert
Both the insert and bulk_insert operations follow the same append-
only semantics, but they have some differences in their write flow
implementation. The comparison is summarized in Table 3-2.

Table 3-2. Comparison of insert and bulk_insert operations

 insert bulk_insert

Merges
duplicates

No by default; enabled by setting hoodie.combine.bef
ore.insert=true

Has indexing
step

No

File-sizing
mechanism

Automatic small-file
handling

Tunable via sort mode and
partitioning

Suitable
scenario

Incremental, small-
batch writes

Initial bootstrap, large-batch
writes



It is important to note that neither of these operations modifies any existing
records in the table, as no indexing is performed. Furthermore, although
both can be configured to merge duplicates in the incoming data, this
merging does not occur between the incoming data and existing records in
the table. Understanding these implications of the append-only semantics is
crucial.

The subsequent two sections will delve into the file-sizing mechanisms
used by these two operations.

Small-file handling for insert and upsert operations
In both batch and stream processing systems, data is written to the file
system in batches of varying sizes. This can lead to a proliferation of small
files over time, especially with smaller batches or low-volume stream
ingestion. This problem is detrimental to query performance, as engines
must open, read, and close numerous files during query planning and
execution. Additionally, a large number of small files increases metadata
overhead, can increase write latency due to slower indexing, and results in
inefficient storage utilization due to lower compression ratios (fewer
records in each compressible data file). Therefore, maintaining optimal data
file sizes is crucial for preserving both query performance and storage
efficiency.

Hudi maintains configured target file sizes automatically when performing
insert and upsert operations. Before writing new records, Hudi identifies
eligible small-sized files in the target partitions and routes incoming data to
these files, adding enough records to bring them closer to the configured
maximum size limit. The remaining records are then written to new files.
This intelligent bin-packing approach ensures that small files eventually
grow to approach the target file size limit, effectively mitigating the small-
file problem without requiring manual intervention.

For COW tables, as illustrated in Figure 3-4, Hudi employs a
straightforward approach where any file slice (consisting of one base file)
smaller than the configured threshold (the default is 100 MB via
hoodie.parquet.small.file.limit) becomes a candidate for



expansion. New inserts are distributed among these candidates to grow
them toward the target file size (the default is 120 MB via hoodie. 
par quet. max.file.size). A file slice that exceeds the small-file
limit will not be considered a candidate to receive new records; it will be
rewritten only when updates or deletes to its existing records are received.





Figure 3-4. New records go through small-file handling in a COW table

MOR tables handle small files a bit differently to optimize for write
performance. When new records are added to a file group as determined by
the small-file handling algorithm, they’ll trigger the rewriting of the latest
file slice in that group. This is acceptable for COW tables, as rewriting base
files is an expected part of update and delete operations, so a rewrite for
new inserts does not worsen the overall time complexity. However, because
MOR tables are designed for lower write latency, frequent rewrites would
defeat the purpose. Therefore, by default, only one small-file group per
partition is selected for expansion during each write operation (this is
configurable via
hoodie.merge.small.file.group.candidates.limit) to
minimize the impact on write latency. Additionally, file groups whose latest
file slice already contains log files from previous updates are excluded from
small-file candidacy. This is because incorporating new inserts would
require merging the base files and log files, which incurs additional
compute overhead and increases write latency. The rationale behind the
different small-file handling behavior in MOR is that, by spreading small-
file handling across multiple write operations and improving the size for
one file group (or more, as per configuration) per partition at a time, the
table’s overall file size distribution will eventually become optimal. Using
MOR usually implies more frequent writes, so these file size improvements
can be realized in a timelier manner.

NOTE
For MOR tables with certain writer index types that allow new records to be appended
directly to log files, this different small-file handling behavior does not apply. In these
cases, inserts can be appended to any file group that meets the small-file threshold, just
like with COW, which helps accelerate the file size optimization process. The bucket
index, which will be discussed in more detail in Chapter 5, is one such common index
type.



The small-file handling process requires finding candidate file groups and
running a bin-packing algorithm for input records, which incurs some
latency to write operations. You can completely turn off small-file handling
by setting hoodie.parquet.small.file.limit to 0 to improve
write performance. To mitigate the file sizing issue, you can instead
configure an asynchronous clustering service that is dedicated to rewriting
file groups with more optimized file sizes. This topic will be discussed
further in Chapter 6.

Sort modes in bulk_insert
Distributed engines divide large workloads into smaller tasks, which are
then assigned to workers across multiple machines. In a data-writing
scenario, each worker processes a portion of the input data. When writing to
nonappendable file formats like Apache Parquet, a single task typically
writes to one output file in a nonpartitioned table. However, for a
partitioned table, a single task may write multiple output files as its records
are routed to different partition paths based on the values of the partition
fields (as shown in Figure 3-5).



Figure 3-5. Tasks writing file slices in different partitions

Unless the input data is specifically controlled or pre-transformed, tasks can
randomly process records belonging to distinct partition paths. This can
result in a large number of small files, particularly when having a large
number of tasks. To address this, the bulk_insert write flow does not



use small-file handling like insert does. This is because bulk_insert
is primarily designed for initial data bootstrapping, where no small files
exist to be filled. The small-file handling process is also inefficient for the
large volumes of data that are typical of bulk inserts. Instead,
bulk_insert uses sort modes to control how data is sorted and
partitioned, and assigned to tasks. This approach enables the creation of
well-sized output files, provided that a suitable sort mode is chosen. We will
introduce two common ones: GLOBAL_SORT and
PARTITION_PATH_REPARTITION.

The GLOBAL_SORT mode sorts the entire input batch of records, first by
partition path and then by record key. This process colocates records from
the same physical partition, enabling each task to write to fewer, larger files.
The globally sorted records can be evenly split and distributed by the
execution engine, which helps mitigate data skew and prevent the waste of
compute resources. Additionally, sorting by record key (especially when
keys are temporal or have business significance) improves data locality
within the file groups, which can improve the efficiency of subsequent
updates. While this strategy offers benefits such as well-sized files, evenly
distributed workloads, and improved data locality, its main drawback is the
substantial overhead from the full data sorting and shuffling, which can
significantly increase write latency and memory consumption. Furthermore,
the data locality benefit is not applicable when record keys are completely
random (such as UUIDs), which makes the sorting overhead less
worthwhile.

On the other hand, the PARTITION_PATH_REPARTITION mode, as
shown in Figure 3-6, assigns all records with the same partition path to the
same task without sorting. This approach provides a similar benefit to the
GLOBAL_SORT mode by writing fewer, larger files. Because it avoids
sorting the entire input batch, it is faster and less memory intensive.
However, its main drawback occurs when data is skewed on certain
partition paths. In such cases, the corresponding tasks can become a
bottleneck, leading to resource wastage as some workers remain idle while
others handle significantly larger workloads.



Figure 3-6. Using the PARTITION_PATH_REPARTITION mode



NOTE
By default, bulk_insert uses a no-op NONE_SORT mode. This mode relies entirely
on the execution engine to distribute workloads to tasks, without interfering with task
splitting and assignment. While this approach has no overhead and provides the fastest
write performance, it can also lead to a severe small-file problem, as illustrated in
Figure 3-5. The choice of sort mode significantly impacts bulk_insert performance,
memory consumption, and the storage pattern of the resulting table. Therefore, it is
crucial to thoroughly analyze the data patterns for your tables and select the most
appropriate strategy for your bulk_insert operations.

To fully customize the sorting and partitioning behavior, you may also implement
Hudi’s BulkInsertPartitioner interface to optimize bulk_insert for your
use cases.

Execute as upsert
Returning to the sensor_data example, we can also perform an
upsert using the INSERT INTO syntax. In this case, any existing
records will be updated, while new records will be inserted. Because we
have defined the record keys and an ordering field for the sensor_data
table, Hudi will automatically instruct the INSERT INTO to perform an
upsert operation. This auto-inferring behavior is designed to reduce
configuration efforts. You can, however, override this behavior for a
specific Spark SQL session by setting
hoodie.spark.sql.insert.into.operation to insert or
bulk_insert. The upsert operation, like insert, employs the small-
file handling process to maintain optimal file sizes, as both are designed for
smaller, incremental data batches rather than the large-volume processing
typical of bulk_insert.

Perform Partial Merge with MERGE INTO
There might be scenarios where you need to manually update a batch of
corrected sensor data in a Hudi table for a specific organization, rather than
relying on the standard INSERT INTO upsert flow. In such cases, you can
leverage the MERGE INTO syntax (introduced in Chapter 2) to load the



batch of data for updates and apply them to the target table, as shown in the
following example:

MERGE INTO sensor_data t 
USING ( 
  SELECT  
    'SENSOR_001'  AS id,  
    'TEMP'        AS type,  
    1797649200010 AS ts,  
    1797649300000 AS emit_ts, 
    300.2         AS value, 
    'ORG_A'       AS org_id 
) s 
ON t.id = s.id AND t.type = s.type AND t.ts = s.ts AND t.org_id = 
s.org_id 
WHEN MATCHED THEN UPDATE SET 
  emit_ts = s.emit_ts, 
  value = s.value;

The SQL statement demonstrates that when the composite record keys and
the partition value from the source table s match those in the target table t,
the corresponding records in t will be updated with the new emit_ts and
value from s. While this example uses a hardcoded sample record for
demonstration, in a real-world scenario, you would typically SELECT data
from an external source table containing the updates.

A key advantage of using MERGE INTO with Hudi, especially for MOR
tables, is its support for partial merge. As we learned in Chapter 2, updates
to a Hudi table are saved as log files within their respective file groups.
Partial merge specifically records only the changed columns and their new
values in these log files. This approach offers multiple benefits. First, it
reduces the amount of data that is written, leading to faster writes and lower
storage consumption. Furthermore, during query execution, the merging
process of base files and log files becomes more efficient, improving query
performance.

Partial merge is particularly crucial for wide tables, which are common in
various data lakehouse scenarios. For instance, in streaming processing, it’s
typical for multiple stream writers to process and write small batches of



updates to a “super wide” fact table that consolidates data from numerous
streams and may contain hundreds or even thousands of columns. Similarly,
in the AI domain, a wide table might store multimodal features sourced
from various origins. In such patterns, where numerous updates involve
only a small fraction of the total table columns, enabling partial merge is
essential. If writing updates with the full schema instead, the efficiency of
write, storage, and read operations would be severely degraded.

NOTE
Currently, the partial merge feature is only available when using MERGE INTO as the
writer. As the project evolves, this powerful feature will be enabled across all sorts of
Hudi writers; for example, through the UPDATE SQL command or through the Hudi
Streamer introduced in Chapter 8.

Perform Deletion
As a quick recap from Chapter 2, records can be deleted using the DELETE
FROM syntax with filtering on either record key fields or other fields:

DELETE FROM sensor_data 
WHERE id = 'SENSOR_001' AND type = 'HUM' AND ts = 1797649200020; 
 

 
DELETE FROM sensor_data 
WHERE org_id = 'ORG_A'; 

Delete a specific sensor data record.
Delete all records of organization A.

Delete partitions efficiently
Hudi also supports the ALTER TABLE DROP PARTITION SQL syntax
to delete an entire partition:

ALTER TABLE sensor_data  
DROP PARTITION (org_id = 'ORG_A');



This method is considerably more efficient than using DELETE FROM for
deleting entire partitions. By leveraging Hudi’s timeline and file group
design, the operation generates a replacecommit action. This action
logically marks all file groups and slices within the target partition as
deleted on the timeline, without physically removing the data from storage.

This metadata-only approach is significantly faster and does not interfere
with subsequent read or write operations. Data processing engines first
consult the timeline, where they will no longer see any data files for the
dropped partitions—thanks to the logical segregation achieved through file
groups and unique file IDs. The engines then proceed with their tasks as if
the partitions were empty.

This also provides a “grace period” for time travel queries (introduced in
Chapter 2). Because the timeline retains action timestamps associated with
past data files, you can still read records that existed before the partition
was dropped. It’s important to note, however, that this past data will not be
retained indefinitely; it will be permanently removed after a configured
period by the cleaning table service, a topic covered in detail in Chapter 6.

Overwrite Partition or Table
Hudi supports inserting a batch of new data and overwriting one or more
partitions, or the entire table at the same time. The corresponding write
operation types in Hudi are insert_overwrite and
insert_overwrite_table. Using the INSERT OVERWRITE
TABLE SQL syntax, you can perform these operations. Here are examples
to overwrite specific partitions:

INSERT OVERWRITE TABLE sensor_data PARTITION(org_id = 'ORG_A')   
SELECT 'SENSOR_003', 'TEMP', 1797649200010, 179764920050, 290.8; 
 

 
SET hoodie.datasource.write.operation = insert_overwrite;  
INSERT OVERWRITE TABLE sensor_data 
SELECT  
'SENSOR_003', 'TEMP', 1797649200010, 179764920050, 290.8, 
'ORG_A';  



This explicitly specifies a target partition to be overwritten with the new
data.
The partition field value must be omitted as all the records are deemed
for the partition specified by the PARTITION clause.
This is the extra Hudi config to instruct INSERT OVERWRITE
TABLE to work on affected partitions dynamically.
The partition field values should be included in the source data if the
table is partitioned.

For illustration, we have only inserted one record into the target partition. In
a practical scenario, you would typically run the SELECT statement against
an external table that contains the source data to be inserted. By omitting
the PARTITION clause, you can overwrite multiple partitions based on the
partition field values of the source data.

To overwrite the whole table, you can set Hudi’s write operation to
insert_overwrite_table:

SET hoodie.datasource.write.operation = insert_overwrite_table; 
 

INSERT OVERWRITE TABLE sensor_data 
SELECT 'SENSOR_003', 'TEMP', 1797649200010, 179764920050, 290.8, 
'ORG_A';

This instructs INSERT OVERWRITE TABLE to truncate the entire
table and then insert the new source data.

WARNING
When the config hoodie.datasource.write.operation is set to
insert_overwrite_table, the INSERT OVERWRITE TABLE command will
always replace the entire table, regardless of whether you specify a PARTITION
clause. You should unset this configuration when you intend to perform a partition-
specific overwrite.



When running any of these operations using INSERT OVERWRITE
TABLE, whether it works on partitions or on the whole table, Hudi
generates a replacecommit action on the Hudi timeline, similar to when
you delete a partition using ALTER TABLE DROP PARTITION. You can
effectively view this action as a series of one or more partition deletes
followed by a bulk_insert. What will actually happen is that within the
same replacecommit action, Hudi records which partitions were
marked as deleted and which new data files have been written to the table.

NOTE
The SQL syntax INSERT OVERWRITE is functionally equivalent to INSERT
OVERWRITE TABLE, with the latter being more commonly seen in documentation for
engines like Spark or Apache Hive. It is important, however, not to confuse these SQL
syntaxes with Hudi’s write operation types, insert_overwrite and insert_ 
over write_ table. Running INSERT OVERWRITE TABLE does not implicitly set
the Hudi write operation to insert_overwrite_table, and the same applies to
running INSERT OVERWRITE.

Highlighting Noteworthy Features
Having covered the internal write flow and demonstrated common write
operations using SQL in the previous two sections, we will now turn our
attention to additional advanced features. This section highlights three
particularly noteworthy capabilities related to writing data to Hudi. For each
feature, we will discuss its usage, provide guidance on when to apply it, and
explain the specific benefits it offers.

Key Generators
Hudi pioneered the concept of primary keys in lakehouses, a feature long
established in traditional databases. The ability to uniquely identify records
is fundamental to Hudi’s core capabilities, including efficient updates and
deletes, high-performance point lookups (Chapter 4), and fast indexing



(Chapter 5). As we saw earlier in this chapter, the HoodieKey struct
represents the unique identifier for a record, containing both the record key
and the partition path. Hudi’s KeyGenerator API serves the purpose of
using the original record key and partition path fields (introduced in
Chapter 2) to create the HoodieKey (see Figure 3-7).

Figure 3-7. Key generation process

Hudi prepends several metafields, all of which are of the string type, to each
record in the table to facilitate efficient processing. These include
_hoodie_record_key and _hoodie_partition_path, which
store the values that constitute the HoodieKey. While the record key and
partition field configurations allow Hudi to locate the relevant values within
the original input data, these raw values may not always be sufficient to



create a globally unique identifier. The KeyGenerator API addresses
this by ensuring the HoodieKey correctly functions as a primary key, a
crucial capability for Hudi’s data management features. It is important to
note that the KeyGenerator API consistently returns the record key and
partition path values as strings, converting them from their original data
types to match the types of their corresponding metafields.

Hudi provides some built-in key generators to handle most common
scenarios:

SIMPLE

This generator is designed for tables with a single record key field and a
single partition field.

COMPLEX

This is used for partitioned tables with one or more record key fields
and one or more partition fields. It constructs the record key and
partition path by concatenating field names and their corresponding
values. It uses a colon (:) to delimit the field name and value, and a
comma (,) to separate each field-value pair.

NON_PARTITION

This is for nonpartitioned tables that have one or more record key fields.
It operates similarly to the COMPLEX generator for the record key but
always produces an empty string for the partition path, which places all
records directly in the table’s base path.

TIMESTAMP

An extension of the COMPLEX generator, the TIMESTAMP type is used
for partitioned tables where the partition path must be a formatted
timestamp string (e.g., a date- or hour-based string). It generates the
record key using the COMPLEX logic but formats the partition path
according to this key generator’s specific timestamp configurations.



CUSTOM

The most flexible of the built-in generators, CUSTOM is ideal for
partitioned tables that require advanced transformations. It
automatically infers the record key generation logic, applying the
SIMPLE strategy for a single record key field and the COMPLEX
strategy for multiple fields. Its key advantage is the ability to combine
multiple partition path generation strategies. For example, you can
configure different transformations for individual partition fields, such
as setting
hoodie.datasource.write.partitionpath.fields=cou
ntry:SIMPLE,date:TIMESTAMP. This configuration applies
SIMPLE logic for the country partition field and TIMESTAMP logic for
the date field, resulting in a multilevel partition path.

TIP
You don’t need to explicitly set a key generator type in your writer configuration. Hudi
automatically infers the appropriate key generator based on the configured values for the
record key and partition fields.

For more usage examples of the KeyGenerator APIs, you can refer to
the official documentation page.

All of the CREATE TABLE examples we have seen thus far required you to
set the primaryKey to specify the record key fields. However, there are
times when the source dataset may not contain a natural primary key field,
and you only want to append new data to the table. Hudi addresses this by
allowing you to omit the record key configuration, at which point it will
automatically generate a globally unique key for each record. This key is
constructed using a combination of 1) the write action timestamp, and 2) the
sequence numbers of the distributed task and the record within that task.

Returning to the sensor_data example from the “Exploring Write
Operations”, if you do not have corrected data and only need to insert all
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incoming records as new data, you can define a COW table without
specifying record key or ordering fields. In this case, the CREATE TABLE
statement can be simplified as follows:

CREATE TABLE sensor_data (  
  id STRING,  
  type STRING,  
  ts BIGINT,  
  emit_ts BIGINT,  
  value FLOAT,  
  org_id STRING  
) USING HUDI  
PARTITIONED BY (org_id);

You can still partition the table based on fields like org_id and leverage
the Key Gener ator API to define the partition paths. While the partition
paths will be generated according to the KeyGenerator settings, the
record keys will be auto-generated.

Beyond simplifying the table setup, the main advantage of automatic key
generation is the ability to efficiently process delete requests. Even if you
initially only perform append-only operations for your sensor_data
table, you may later be legally required to delete specific records, such as
for GDPR compliance. By having properly populated record keys, you can
leverage Hudi’s efficient write processes to perform these deletions
effectively.

Merge Modes
Many real-world data pipelines require record merging to ensure business
logic is processed correctly. Hudi features a first-class design for merging
mechanics, using merge mode to define common semantics and the record
merger API for full customization. Record merging in Hudi occurs at
multiple stages—record preparation, storage writes, querying (Chapter 4),
and compaction (Chapter 6)—with the standardized API ensuring
consistent behavior throughout.



Hudi supports two merge modes out of the box,
COMMIT_TIME_ORDERING and EVENT_TIME_ORDERING:

COMMIT_TIME_ORDERING

Merges the records based on arrival order and picks the latest version as
the merged result

EVENT_TIME_ORDERING

Merges the records based on a user-specified ordering field and picks
the version with the highest ordering value

The COMMIT_TIME_ORDERING mode is, for instance, suitable for
processing database change logs, where the records are in strict order of a
logical sequence number (LSN) that denotes the ordering of the writes in
the upstream database. The EVENT_TIME_ORDERING mode works for
use cases with late-arrival events such as user activities being sent out with
delay due to a signal blackout. You can set the
hoodie.write.record.merge.mode configuration to pick the right
merge mode for your use cases. If you don’t set it,
COMMIT_TIME_ORDERING will be used if the table has not set any
ordering field, and EVENT_TIME_ORDERING will be used for the table
that has set one or more ordering fields.

If a full customization of the merging logic is needed, you may implement
the record merger API and set these configurations:

hoodie.write.record.merge.mode=CUSTOM 
hoodie.write.record.merge.custom.implementation.classes=<your 
implementations> 
hoodie.write.record.merge.strategy.id=<ID of the implementation 
to use>

The configurations for a merge mode will be persisted in the table as table
properties, and they cannot be altered after the table is created to ensure
consistent merging behavior. You may read more about this feature in the
documentation page.
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Schema Evolution on Write
We have been showcasing Hudi’s write capabilities using SQL examples,
but this is not the only way to write to Hudi tables. Execution engines like
Spark or Flink also support programmatic APIs that allow you to write code
(e.g., Python or Java) to perform the same operations as SQL. Hudi
seamlessly integrates with these programmatic APIs.

Here is an example of using PySpark to upsert records to the
sensor_data table:

columns = ["id", "type", "ts", "emit_ts", "value", "org_id"] 
data = [("SENSOR_004", "TEMP",  1797649200050, 1797649200100, 
70.1, 'ORG_C')] 
df = spark.createDataFrame(data).toDF(*columns) 
 
hudi_options = { 
    "hoodie.table.name": "sensor_data", 
    "hoodie.datasource.write.recordkey.field", "id,type,ts", 
    "hoodie.datasource.write.partitionpath.field": "org_id", 
} 
 
df.write.format("hudi"). \ 
    options(**hudi_options). \ 
    mode("append"). \ 
    save(basePath)

For the purposes of this section, we do not need to understand every line of
this code. The key takeaway is that programmatic APIs offer greater
flexibility than SQL. For instance, you can transform the input data using
any functions you need, provided the necessary library is installed. This
flexibility, however, introduces additional considerations for handling
schema evolution during writes.

When using INSERT INTO, SQL engines validate that your input data
conforms to the schema defined during table creation; missing columns will
result in a validation failure. In contrast, with programmatic APIs like the
PySpark example, you create a Spark DataFrame where the input records
conform to the columns you define. At the API level, there is no inherent
validation for mismatches between the input data’s schema and the table’s



schema. This is where Hudi’s capabilities become essential, as its table
format defines the behavior for handling such schema evolution.

Hudi supports backward-compatible schema evolution, which means the
incoming schema can add new columns or promote the data type of an
existing column (e.g., from INT to LONG). Although incompatible schema
evolution, such as dropping existing columns, is also supported by enabling
hoodie.datasource.write.schema.allow.auto.evolutio
n.column.drop (which is false by default), this practice is not
recommended. It can lead to numerous downstream compatibility issues
and migration efforts.

By default, the Hudi writer will fail if the incoming schema is backward
incompatible with the latest table schema. To provide more flexibility in
handling incoming data, you can set
hoodie.write.set.null.for.missing.columns to true.
This triggers a reconciliation process between the incoming and existing
schemas, which works as follows:

Any new columns in the incoming schema are added to the table’s
schema.

Any columns present in the table’s schema but missing from the
incoming schema are populated with null values for the
incoming records.

Any matching columns where the incoming type is a promoted
version of the table’s type (e.g., incoming LONG versus table INT)
will cause the table’s schema to be promoted to the new type.

This reconciliation process allows Hudi tables to gracefully handle schema
mismatches, preserving backward compatibility for downstream pipelines.



NOTE
The Hudi project is constantly evolving. While the principle of recommending
backward-compatible changes remains consistent, there are many nuances to how
schema evolution is handled. It is recommended to consult the latest official
documentation page for the full list of cases.

Bootstrapping
Imagine you have a large dataset of plain Parquet files in a cloud storage
service (e.g., Amazon S3), partitioned by specific fields. You want to
import this dataset into a new Hudi table in a new directory and preserve
the exact same records so that you can leverage Hudi’s advantages like
efficient upsert or incremental queries. The most intuitive approach would
be to load the Parquet files using Spark and then perform a bulk_insert
into a new Hudi table, which the CREATE TABLE AS SELECT example
from Chapter 2 demonstrates. However, for a huge data volume, this
approach can be time-consuming and costly, as it requires nontrivial
operational effort, such as scaling out a properly sized cluster, and results in
numerous data read and write operations that can lead to high cloud bills.

The Hudi bootstrap operation is designed to make this import process
more efficient in terms of both time and cost. A high-level overview is
depicted in Figure 3-8.
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Figure 3-8. METADATA_ONLY bootstrap process



The METADATA_ONLY bootstrap process follows these three main steps:

1. A bootstrap runner reads a source directory of Parquet files to
bootstrap a new Hudi table at a target directory. For each source
file, it creates a “skeleton” file that contains only Hudi’s
metafields, such as _hoodie_record_key and _hoodie_ 
par tition_ path, which are derived from the original records
based on write configurations.

2. The runner creates bootstrap index files, stored under
.hoodie/.aux/.bootstrap/, that map the skeleton files to their
corresponding source data files. These index files are a key
component, enabling subsequent Hudi writers and readers to
“stitch” the metafield values from the skeleton files with the
original records. This allows the skeleton files to be treated as
normal base files within file groups.

3. The bootstrap operation is a transactional write action,
recorded on the table’s timeline. As it is the first write operation for
a table, a special action timestamp is reserved. For
METADATA_ONLY bootstrapping, the action timestamp is always
00000000000001.

Another mode of the bootstrap operation is called FULL_RECORD,
which is essentially a bulk insert. It reads the original data and writes it to
the target table, with the write action recorded on the timeline with the
timestamp 00000000000002.

Once a table has been bootstrapped, it functions as a normal Hudi table.
Subsequent writes will be performed on the target table, leaving the source
directory untouched.

NOTE
The feature of doing partial merge as introduced earlier in this chapter is not yet
supported for bootstrapped tables.



The key advantage of using bootstrap is its METADATA_ONLY mode. As
you can see, creating the skeleton files only involves reading a small
fraction of the original data—the columns needed to compute the Hudi
metafields—which drastically reduces the read and write workload
compared to the FULL_RECORD or a standard bulk_insert. The
bootstrap operation is also flexible; you can use regular expressions to
select which partitions in the source directory should be handled by
METADATA_ONLY mode and which should use FULL_RECORD. For
specific commands and the full list of bootstrap configurations, please refer
to the documentation.

Summary
This chapter provided a comprehensive exploration of Hudi’s write
capabilities, covering both the internal mechanics and practical applications
of writing data to Hudi tables. The knowledge presented serves as a
foundation for building efficient and reliable data lakehouse pipelines.

Hudi’s write flow follows a systematic five-step process: initiating
commits, preparing records with optional duplicates merging and indexing
steps, partitioning data for distributed processing, writing to storage through
specialized write handles, and finalizing commits on the timeline. This
structured approach ensures data consistency and enables Hudi’s core
capabilities, such as efficient updates and deletes.

Hudi offers a variety of write operations:

The insert operation appends new data with small-file handling,
ideal for incremental batch processing.

The bulk_insert operation handles large-volume data loads
efficiently through repartitioning strategies, perfect for initial data
bootstrapping.

The upsert operation combines inserts and updates in a single
operation, automatically handling both new and existing records,
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and also leveraging small-file handling to optimize file sizes.

Using MERGE INTO to leverage the partial merge feature
significantly improves your Hudi table’s efficiency in write, read,
and storage.

Using DELETE FROM is good for record-level deletions, and
ALTER TABLE DROP PARTITION is ideal for efficient
partition deletes.

The insert_overwrite and insert_overwrite_table
operations combine the efficiency of partition deletion and bulk
insert to realize efficient data overwrite.

Understanding when to use each operation type is crucial for optimal
performance and storage efficiency.

Hudi provides several powerful features that enhance write operations:

Key generators create unique record identifiers from your data
fields, with built-in options to handle single or multiple record key
and partition fields, plus automatic key generation for append-only
tables.

Merge modes support common ordering semantics and fully
customizable merging logic to facilitate consistent and efficient
merging processes.

Schema evolution allows tables to adapt to changing data
structures over time, supporting backward-compatible changes like
adding columns and promoting data types without breaking
existing pipelines.

Bootstrapping enables efficient migration of existing datasets into
Hudi tables by creating metadata-only references to original files,
dramatically reducing time and cost compared to full data rewrites.

By mastering the concepts in this chapter—from understanding the write
flow and selecting the right operation to leveraging Hudi’s advanced



features—you are now fully equipped to build efficient and reliable data
lakehouse pipelines tailored to your specific needs.



Chapter 4. Reading from Hudi

The ability to efficiently read and query data is the ultimate purpose of any
data lakehouse, directly impacting the speed and flexibility of analytics and
machine learning. A deep understanding of Hudi’s read-side capabilities—
and how they integrate with various query engines—is therefore paramount
for building a performant and reliable data platform. Building upon the
foundational concepts of table layouts from Chapter 2 and the write
operations we explored in Chapter 3, this chapter combines technical deep
dives and practical examples, serving as your definitive guide to reading
data from Apache Hudi.

This chapter is organized into three sections to provide a comprehensive
exploration of Hudi’s read capabilities. “Integrating with Query Engines”
explains how popular query engines interact with Hudi. We will introduce
the Hudi read flow, discuss the integration mechanisms for seamless and
efficient querying of your Hudi tables, and examine the role of data catalogs
in this process.

To ground our discussion in practical application, “Exploring Query Types”
show cases Hudi’s diverse read capabilities with examples. We will explore
different query types and discuss the related behaviors and configuration
options that enable you to solve a wide range of analytical challenges.

The flexibility and power of Hudi’s read operations are enhanced by several
important features designed for advanced data lakehouse patterns.
“Highlighting Noteworthy Features” will explore these more involved
features and designs.

By completing this chapter, you will be able to effectively read data from
Hudi. You will gain a clear understanding of the read flow, learn how to
apply various query types for different scenarios, and know how to use
advanced features to architect an efficient and reliable data platform for
your downstream applications.



Integrating with Query Engines
In a data lakehouse architecture, the query engine is the computational
powerhouse responsible for processing user queries against data stored in
the lakehouse. Think of it as a master librarian for your data. It interprets
your requests—typically expressed in SQL—and efficiently retrieves the
precise information you need from the vast archives of your storage layer
(like Amazon S3, GCS, or HDFS). Engines such as Apache Spark, Presto,
and Trino are the workhorses that provide the APIs and distributed
execution capabilities to read, process, and return data from tables. They
effectively decouple the compute layer from the storage layer, providing the
flexibility to choose the right tool for your specific analytical needs.

Query Lifecycle
To appreciate how Hudi integrates with query engines, it’s helpful to first
understand the typical lifecycle of a query. While specific implementations
vary between engines like Spark or Trino, they all follow a similar
multiphase process to transform a user’s SQL statement into a result set.
This process ensures that the query is not only understood correctly but also
executed in the most efficient way possible across a distributed cluster.
Let’s walk through the key phases of this lifecycle, shown in Figure 4-1.



Figure 4-1. Query lifecycle in a distributed query engine

The journey begins when a user submits a query, most commonly through a
SQL statement. The query engine’s first task is parsing, where it breaks
down the SQL string to verify its syntax and structure. It identifies the
distinct components of the query—such as the SELECT columns, FROM
table, and WHERE clause predicates—and organizes them into a logical
representation, often called an abstract syntax tree (AST).

Next comes the crucial planning phase, which is typically split into two
steps. First, in logical planning, the engine takes the parsed table and
database names and consults a central data catalog (e.g., Apache Hive
Metastore or AWS Glue). This catalog provides vital metadata about the
table, including its storage location, data format (e.g., Apache Parquet),
schema, and partitioning details. Using this information, the engine builds a
logical plan—a high-level, abstract recipe for fetching the data. Following
this, the engine performs physical planning. The query optimizer evaluates



various strategies for executing the logical plan, such as different join
algorithms or filter pushdown opportunities, and selects the most efficient
physical plan based on a cost model. The output is a highly optimized
execution plan, often represented as a directed acyclic graph (DAG), that
details the exact sequence of operations to be performed.

With a plan in hand, the engine moves to the execution phase. It translates
the physical plan into concrete tasks that are distributed across the physical
resources of the cluster. Worker nodes execute these tasks in parallel,
reading the necessary data files from the underlying storage concurrently.

Finally, in the results collection phase, the partial results computed by each
worker node are gathered and aggregated by a central coordinator or driver
node. After any final processing, the complete result set is returned to the
user, concluding the query lifecycle.

Data Catalog
In the context of a data lakehouse, a data catalog is a centralized metadata
management service that acts as an inventory of all your data assets. It is the
linchpin that connects query engines to the underlying data, making the data
discoverable and queryable. By maintaining a registry of tables, schemas,
partitions, and file locations, the catalog provides the critical information
that query engines need during the planning phase of the query lifecycle.

A data catalog is indispensable for organizing the vast number of tables in a
modern data lakehouse. It allows users to search for tables and browse
metadata, such as schemas and column descriptions, to understand the
datasets available within their own teams or across the organization. This
capability serves two primary, complementary functions: it provides a
technical registry for developers and data scientists to discover and access
datasets, while also offering a business-centric platform for governance,
security, and comprehensive data management.

In practice, many organizations operate a federated ecosystem of catalogs.
This often includes technical catalogs, such as Hive Metastore, AWS Glue,
Databricks Unity Catalog, and Apache Polaris Catalog, which are tightly



integrated with the data platform’s execution engines. Complementing these
are specialized data governance and metadata management catalogs—like
DataHub, Alation, Atlan, and Collibra—that offer advanced capabilities
such as schema evolution tracking, data lineage, and data quality profiling.
Together, these tools facilitate robust governance and ensure data reliability
and consistency across a diverse landscape.

Hudi supports seamless integration with multiple data catalogs (a topic we
will discuss in detail in Chapter 9). The key takeaway here is that by
registering your Hudi tables with a data catalog, you enable query engines
to connect to it, fetch the necessary metadata, and efficiently execute the
query planning phase.

Although a data catalog is not a strict prerequisite for querying Hudi tables
—you can always use the programmatic APIs offered by engines like Spark
or Apache Flink to read a table from its storage location directly—it is far
more common to establish a central catalog for your data lakehouse. This
approach unlocks the benefits of data discovery and governance and,
importantly, allows you to leverage the power and expressiveness of SQL,
the lingua franca of data analytics. For this reason, the examples throughout
the rest of this chapter will use SQL to demonstrate Hudi’s read capabilities.

Hudi Integration
Now that we have a clear picture of the standard query lifecycle, we can
examine how Hudi fits into this process. Hudi’s integration with query
engines is not about replacing this lifecycle but enhancing it. By providing
specialized connectors and logic, Hudi injects its own intelligence into the
planning and execution phases, enabling engines to efficiently navigate its
unique file layout and transactional guarantees. This ensures that queries on
Hudi tables are both fast and accurate.

As illustrated in Figure 4-2, Hudi’s deep integration with query engines
occurs primarily during the planning and execution phases. This is made
possible through engine-specific artifacts, such as the hudi-spark-
bundle for Spark or the dedicated connectors for Presto and Trino. The



integration acts as a bridge between the query engine’s generic processing
logic and Hudi’s specific storage format.

Figure 4-2. Hudi integration in the query engine read flow



Get pruned file slices
During the planning phase, the Hudi integration is responsible for a critical
optimization: identifying the minimal set of file slices required to satisfy the
query. This is achieved through the coordinated work of an index reader and
a timeline reader (see Figure 4-3).



Figure 4-3. Getting pruned file slices in the planning phase



The index reader uses the query’s filter predicates to perform data skipping.
It queries the indexes stored in the metadata table, an indexing subsystem
within the Hudi table, to find only the file slices that could possibly contain
the requested records. The metadata table provides powerful indexing
capabilities and can efficiently prune both partitions and individual files
based on various filter types, including range comparisons and equality
matches—a topic to be explored deeply in Chapter 5. This lookup process
uses all available filters to drastically reduce the number of candidate file
slices.

The timeline reader loads the timeline instants to further refine this list. For
a time travel query, for instance, the timeline reader uses the target
timestamp to find the closest file slices created earlier than that point. It also
filters out those file slices that have been rewritten by a replacecommit
action (such as an INSERT OVERWRITE operation, introduced in
Chapter 3), provided that replacecommit is in the target timestamp
range for the query. Overall, these steps produce a list of pruned file slices
to be processed in the next phase.

Read file slices efficiently
In the subsequent execution phase, the query engine distributes the task of
reading these identified file slices across its worker nodes. As records are
read from the files by a file group reader, the engine applies any applicable
row-level filters and performs column projections to select only the
requested fields (see Figure 4-4).



Figure 4-4. Reading a file slice in the execution phase



Reading a file slice is straightforward when it only consists of a base file,
which is always the case for Copy-on-Write (COW) tables. For Merge-on-
Read (MOR) tables, however, a file slice may also contain several log files
holding new or updated records. In these situations, the file group reader
uses the configured merge mode (introduced in Chapter 3) for the table to
merge records from the log files with those in the base file on the fly. This
highly optimized merge process ensures that the query engine can
efficiently receive and return the correct version of each record from the
target file slices.

In summary, Hudi’s integration with query engines enhances the standard
query lifecycle. By injecting its logic into the planning and execution
phases, Hudi ensures that queries are highly optimized, leveraging its
indexing capabilities for efficient data pruning, and timeline filtering based
on transaction boundaries for data consistency. This seamless integration is
what allows users to query Hudi tables with ease and performance.

With this foundational understanding of how Hudi and query engines work
together, we can now shift our focus to the different types of queries that
Hudi supports, each designed to address specific analytical needs.

Exploring Query Types
To make the concepts in this chapter more tangible, we will use a running
example centered on a fictional ridesharing company called LetsMotor.
Initially founded to help city dwellers hire drivers for short-to-mid-distance
travel, LetsMotor has since expanded its services and, consequently, its data
needs. Throughout this section, we will work with one of its core Hudi
tables, trips. This table contains detailed customer trip records, with
attributes such as a unique trip identifier, trip start timestamp, fare, rider,
trip record update timestamp, and driver names, and the city where the ride
was initiated.

Let’s first set up the table:



CREATE TABLE trips ( 
    uuid STRING, 
    start_ts BIGINT, 
    rider STRING, 
    driver STRING, 
    fare DOUBLE, 
    update_ts BIGINT, 
    city STRING 
) USING HUDI 
TBLPROPERTIES( 
    type = 'mor', 
    primaryKey = 'uuid', 
    preCombineField = 'update_ts' 
) 
PARTITIONED BY (city);

And insert some sample data:

INSERT INTO trips VALUES  
('ride-001', 1672531200, 'rider-A', 'driver-1', 15.75, 
1672531260, 'SF'), 
('ride-002', 1672534800, 'rider-B', 'driver-2', 22.50, 
1672534860, 'NYC'), 
('ride-003', 1672538400, 'rider-C', 'driver-3', 8.25,  
1672538480, 'SF'), 
('ride-004', 1672542000, 'rider-D', 'driver-4', 31.80, 
1672542120, 'LA'), 
('ride-005', 1672545600, 'rider-E', 'driver-5', 12.40, 
1672545720, 'SEA');

Given the high volume of data writes and updates on the LetsMotor
platform, the MOR table type is a more suitable choice. The query types we
will discuss in the following sections are applicable to both MOR and COW
table types, and their behavior is consistent regardless of which type you’re
using.

Snapshot Query
A snapshot query is the default query type when reading Hudi tables. As its
name suggests, it provides a snapshot of the table’s data as of the latest
commit. This type of query is used to read the most up-to-date committed
data, and it can be achieved with a standard SELECT SQL statement:



SELECT rider, driver, fare, city  
FROM trips 
WHERE fare > 20;

As discussed in Chapter 2 on table type trade-offs, a snapshot query on an
MOR table takes longer to complete compared to a COW table when log
files are present. This is because the query engine must perform an on-the-
fly merge of the base files and log files to provide the most current data.

If you require optimal query performance and are willing to sacrifice some
data freshness, you can still use an MOR table for its fast ingestion
capabilities by running a read optimized query. To do this, simply set the
following configuration before running your SELECT statement:

SET hoodie.datasource.query.type=read_optimized

This MOR-only setting instructs the query engine to read only the base files
and skip the merging of recent updates from the log files. While this can
speed up queries to a level comparable with COW tables, it is important to
remember that the results will not include the most recent records from the
log files.

TIP
To use read-optimized queries, you should also consider running the compaction table
service (covered in Chapter 6). This service merges log files with base files and
produces new base files, allowing read-optimized queries to return more-recent data.
Using a targeted strategy, you can run compaction specifically on partitions that are
queried most frequently.

Time Travel Query
While we briefly touched upon the time travel query in Chapter 2, let’s now
take a closer look. Consider a scenario where we need to update a record in
the trips table to adjust the fare due to a promotion. We can specifically
update that record using the following SQL statement:



UPDATE trips  
SET fare = fare - 5,  
    update_ts = unix_timestamp() 
WHERE uuid = 'ride-002';

The finance team at LetsMotor may need to run analytical queries on the
fare data before this promotion was applied. A time travel query is perfect
for this use case. By using the TIMESTAMP AS OF clause, you can
retrieve the record’s value from a specific point in time:

SELECT rider, driver, fare, city 
FROM trips TIMESTAMP AS OF '20230101091628123'  
WHERE uuid = 'ride-002';

A timestamp in the form of the Hudi timeline timestamp format
yyyyMMddHHmmssSSS

By providing a timestamp with the query, users can effectively travel back
in time to retrieve the table’s state at that specific moment. Internally, the
Hudi timeline reader compares the provided timestamp against the table’s
timeline to find either an exact match or the closest earlier commit. The
reader then uses the timestamp from this found commit to filter out any file
slices created after that point, thereby reconstructing the table’s historical
snapshot. If the specified timestamp precedes the first commit on the
timeline, the query will yield no results. Conversely, if the timestamp is
more recent than the latest commit, the query will simply return the most
current snapshot of the data.

TIP
You can think of the snapshot query as a special case of the time travel query, where the
query timestamp always points to the latest commit on the Hudi timeline.

For ease of use, Hudi time travel queries support other common standard
timestamp formats like:



SELECT * FROM trips 
TIMESTAMP AS OF '2023-01-01 09:16:28.123'   
WHERE uuid = 'ride-002'; 
 
SELECT * FROM trips 
TIMESTAMP AS OF '2023-01-01'  
WHERE uuid = 'ride-002';

Time travel query using the yyyy-MM-dd HH:mm:ss.SSS format
Time travel query using the yyyy-MM-dd format

Time travel queries are useful for many downstream analytics use cases like
compliance audits, as well as for internal data debugging and
troubleshooting.

Incremental Query: The Latest-State Mode
A common use case for Hudi is to power multistage data pipelines, where
data is progressively transformed and normalized as it moves from its raw
state to a more refined one. Consider the platform team at LetsMotor, which
needed to model how trips data moves through such a pipeline.

Before adopting Hudi, the team’s process was highly inefficient. At each
stage, its ETL jobs had to reprocess the entire dataset from the previous
stage. This brute-force approach was necessary because, in a traditional
data lake, there was no straightforward way to identify which specific
records had been added or changed since the last processing run.

Hudi’s incremental queries fundamentally solve this problem. By providing
a view of only the records that have changed between two points in time,
Hudi allows the team to build highly efficient pipelines that process only
the delta, significantly speeding up downstream processing.

This is the primary use case for an incremental query in its default latest-
state mode. Given a start and end commit time, this query will return the
complete and most up-to-date record for every key that was inserted or
updated within that time window. It effectively answers the question: “What
is the latest state of all the records that changed since I last checked?”



Record-level change tracking
So, how does Hudi efficiently isolate just the changed records? The process
involves a two-phase filtering mechanism. First, much like a time travel
query, an incremental query filters file slices based on time. However,
instead of using a single timestamp, it uses the specified time range to select
all file slices that were created within that window.

This initial pass is not sufficient on its own. A single base file can contain
records associated with many different commits, especially when older data
is carried over into new file slices during write operations. To ensure
precision, Hudi performs a second filtering pass at the record level during
the execution phase. This is where Hudi’s metafields become crucial. In
Chapter 3, we introduced _hoodie_record_key and
_hoodie_partition_path. For incremental queries, a third
metafield, _hoodie_commit_time, plays the key role. This field,
embedded within every record, stores the timestamp of the commit that last
modified it. As the query engine scans the data files, it uses this field to
select only those records whose commit time falls within the target time
window. For MOR tables, Hudi’s log files also encode this commit time
information within their metadata blocks, serving the same filtering
purpose.

The parameters
Here’s a SQL template of an incremental query that the platform team at
LetsMotor can use to figure out which updates need to be applied to
downstream views of the data:

SELECT * FROM  
hudi_table_changes(table or path, query_type, start_time [, 
end_time]);

This table-valued function takes four parameters, which are detailed in
Table 4-1.



Table 4-1. Parameters of the table-valued function for incremental query

Parameter
name Description Notes

table or path Table identifier or
the base path to the
table.

If it’s a table identifier, it’ll
usually be in the form <database
name>.<table name>.
If it’s a path, it’ll be the storage
system’s absolute path.

query_type The incremental
query mode to use.

The valid value is latest_state
or cdc. The cdc mode will be
discussed in the next section.

start_time The timestamp
used to mark the
incremental change
window’s start
(exclusive).

The valid value is earliest or a
supported timestamp format.
The earliest value denotes the
earliest available commit
timestamp from the timeline. The
supported timestamp format is
the Hudi timeline’s timestamp
format yyyyMMddHHmmssSSS.

end_time The timestamp
used to mark the
incremental change
window’s end
(inclusive). This is
an optional
parameter.

When end_time is omitted, the
function returns the changes up to
the latest commit (inclusive) in
the timeline.

To get the latest state of all records changed since the beginning of the
table’s history, you can specify 'earliest' as the start time and omit the



end time. This query is equivalent to running a snapshot query on the
table’s current state:

SELECT * FROM hudi_table_changes('trips', 'latest_state', 
'earliest');

Now, let’s say we have detected a data issue with a batch of updates applied
after 2024-05-19, and we want to see the state of the table before those
changes. The following query retrieves the latest state of all records
committed since the beginning and up to the 2024-05-19 start (0 o’clock,
inclusive), effectively performing a time travel query to that specific point
in time:

SELECT * FROM hudi_table_changes( 
  'trips', 'latest_state', 'earliest', '20240519000000000' 
); 

Return the states of the changed records starting from the earliest and
ending at 2024-05-19 0 o’clock (inclusive). The states correspond to
2024-05-19 0 o’clock.

We can also isolate the changes to a certain time window. The following
query retrieves the latest state of all records that were updated from 2024-
05-18 start (0 o’clock, exclusive) up to 2024-05-19 start (0 o’clock,
inclusive):

SELECT * FROM hudi_table_changes( 
  'trips', 'latest_state', '20240518000000000', 
'20240519000000000' 
); 

Return the states of the changed records starting from 2024-05-18 (0
o’clock exclusive) and ending at 2024-05-19 0 o’clock (inclusive). The
states correspond to 2024-05-19 0 o’clock.

Incremental Query: The Change Data Capture Mode



While the latest-state mode is excellent for propagating the final state of
records, some use cases require a deeper understanding of how the data
changed. Consider LetsMotor’s real-time driver leaderboard. A trip’s rating
or tip amount can be updated long after the trip is complete. To keep the
leaderboard accurate, a downstream process needs to know the exact nature
of each modification. For example, it must distinguish between a newly
added tip, a correction to an existing one, or a deletion of an invalid trip
record—details that the latest-state mode cannot provide.

Those are perfect scenarios for change data capture (CDC). In Hudi, you
can enable CDC mode for incremental queries to get a richly detailed log of
all record-level changes. Instead of just returning the latest state, a CDC
query provides the operation type (insert, update, delete) for each
change. Furthermore, for updates, it provides both the “before” and “after”
images of the record, giving you the complete context of the modification
(see Figure 4-5). This granular insight is invaluable for building
sophisticated downstream applications that need to react to specific data
transformations.





Figure 4-5. Typical CDC scenario

Figure 4-5 illustrates two snapshots of a Hudi table at times t1 and t2.
Between these two timestamps, one record is inserted, another is updated,
and a third is deleted. An incremental query in CDC mode for this time
window will return a detailed log of these operations. The returned records
contain an operation type column op that can be i for insert, u for update,
or d for delete to indicate the types of changes happened. For insert, the
before column will be null, and the after column will contain the
inserted record. For update, the before column will contain the version of
the record before the update, and the after column will contain the
updated record. For delete, the before column will contain the version of
the record before the delete, and the after column will be null,
indicating the deletion.

To enable CDC queries, you must first activate the feature at the table level.
This is done using two key table properties, as shown in the following
example for creating a new trips table:

CREATE TABLE trips ( 
    uuid STRING, 
    start_ts BIGINT, 
    rider STRING, 
    driver STRING, 
    fare DOUBLE, 
    update_ts BIGINT, 
    city STRING 
) USING HUDI 
TBLPROPERTIES( 
    primaryKey = 'uuid', 
    preCombineField = 'update_ts', 
    'hoodie.table.cdc.enabled' = 'true',  
    'hoodie.table.cdc.supplemental.logging.mode' = 'OP_KEY_ONLY' 
 

) 
PARTITIONED BY (city);

This option enables the CDC feature for the table.
This option sets the logging mode for persisting CDC-related data.



Once CDC is enabled, Hudi writers will begin generating CDC log files
(with a .cdc suffix) alongside the base files and regular log files within each
file group. These specialized files record detailed information about the
changes made during each write operation, which query engines can then
read and interpret.

The configuration
hoodie.table.cdc.supplemental.logging.mode controls the
content of the CDC data logged. Table 4-2 describes each mode’s
behaviors.

Table 4-2. Supplemental logging modes for using CDC in Hudi

CDC
logging
mode Description

OP_KEY_ONLY The CDC log files store only the changed record keys
and the corresponding operations.

DATA_BEFORE The CDC log files store the full changed records before
the change, and the corresponding operations.

DATA_BEFORE_A
FTER

The CDC log files store the full changed records before
and after the change, and the corresponding operations.
This is the default mode.

As the table indicates, OP_KEY_ONLY is the most storage-efficient option.
This means that it requires the query engine to perform additional lookups
to reconstruct the full before and after images. In contrast,
DATA_BEFORE_AFTER maximizes query performance by logging both
images directly, albeit at a higher storage cost. DATA_BEFORE offers a
balance between these two extremes. The choice of logging mode,
therefore, represents a direct trade-off between storage overhead and CDC
query performance.



WARNING
It is critical to understand that both hoodie.table.cdc.enabled and
hoodie.table.cdc.supplemental.logging.mode are permanent, table-
level configurations. Once set for a table, they cannot be changed or disabled.

After configuring your table for CDC, querying the change stream uses the
same hudi_table_changes function we introduced previously for the
latest-state mode. The only difference is setting the second query
parameter to cdc.

Highlighting Noteworthy Features
Having explored multiple types of queries, we’ve seen how Hudi supports
several key analytical read needs. We will now turn our attention to three
additional read-related features, providing insights on their use cases and
benefits.

Streaming Read
Hudi’s timeline is the core component that enables its powerful incremental
processing capabilities, making it a natural fit for streaming read patterns.
In essence, a streaming read involves processing data in small, continuous
batches based on offsets in the source. This model aligns perfectly with
Hudi’s incremental query mechanism, which leverages action timestamps
on the timeline to fetch only the data that has changed since the last read.

Out of the box, Hudi provides robust integrations with leading stream
processing frameworks, most notably Spark’ Structured Streaming and
Flink, which were designed with a streaming-first philosophy. This native
support simplifies the development of real-time data pipelines. To illustrate,
let’s consider how to implement a streaming read using PySpark:

from pyspark.sql import functions as F 
 



base_path = "/base/path/to/the/table" 
 
def func(batch_df, batch_id): 
    # Simple aggregation logic - return the aggregated DataFrame 
    return batch_df.groupBy("column_name") \ 
        .agg( 
            F.count("*").alias("record_count"), 
            F.sum("numeric_column").alias("total_amount"), 
            F.avg("numeric_column").alias("avg_amount"), 
            F.max("timestamp_column").alias("max_timestamp") 
        ) 
 
spark.readStream.format("hudi") \ 
    .option("hoodie.datasource.query.type", "incremental") \ 
    .option("hoodie.datasource.query.incremental.format", "cdc") 
\ 
    .load(base_path) \ 
    .writeStream.format("console") \ 
    .foreachBatch(func) \ 
    .start()

The example demonstrates a common use case: performing a continuous
CDC incremental query on a CDC-enabled Hudi table. In this code
example, we set up a streaming source that reads incrementally from the
Hudi table, performs an aggregation on each microbatch of changes, and
prints the results to the console. You don’t need to explicitly set the start
and end timestamps for the incremental query here, as Hudi internally
manages them for the continuous query execution.

While this example simply prints the output, a more practical application
would be to write the transformed stream to another Hudi table, forming a
chain of streaming transformations. This ability to daisy-chain streaming
jobs allows for the creation of sophisticated multistage data pipelines.
Hudi’s fundamental design, which combines a detailed timeline for tracking
changes with the MOR table type’s ability to absorb high-throughput writes,
makes it an excellent foundation for modern streaming architectures. To see
more examples, please check out the documentation page for streaming
read.

Schema Evolution on Read

https://oreil.ly/b-cfD


In Chapter 3, we discussed schema evolution on write, which handles
schema mismatches while ensuring backward compatibility. However, data
systems are dynamic, and there are scenarios where more-drastic,
backward-incompatible schema changes are necessary. For example, you
might need to rename, delete, modify, or even move columns, including
those nested within complex types.

Hudi addresses this need with schema evolution on read. By enabling the
configuration hoodie.schema.on.read.enable=true, you can
perform these complex schema alterations without rewriting the underlying
data. Let’s examine what happens when you rename a column using an
ALTER TABLE command with this feature enabled:

SET hoodie.schema.on.read.enable=true; 
ALTER TABLE trips RENAME COLUMN driver TO driver_id;

Instead of launching a massive data rewriting job, Hudi performs an
alter_schema operation, which creates a special .schemacommit file in
the .hoodie/.schema/ directory. This file acts as a ledger. It assigns a unique
ID to each column in the original schema and then records the change—in
this case, the new name for the corresponding column ID.

When a query engine reads the table, it sees the new schema. However, the
underlying base files and log files still contain data written with the old
schema. Hudi bridges this gap by using the information in the
.schemacommit file to map the new schema back to the old one at read time.
This metadata-only approach is efficient, avoiding costly data migration.



WARNING
While powerful, using ALTER TABLE to make backward-incompatible changes carries
significant operational risks. Because the command permanently modifies the table
schema, you are responsible for ensuring that all upstream writers and downstream
readers can handle the new structure. For instance, if you drop a column, an existing
write job still producing records with the old schema will likely fail. Similarly, if
another team relies on the previous schema for a dashboard, you must coordinate with
that team to prevent its reports from breaking. Given these practical challenges, Hudi
does not recommend making backward-incompatible changes unless absolutely
necessary.

Hudi also supports other incompatible changes, like dropping a column,
changing a column’s data type, and reordering columns. For a
comprehensive list of supported operations and more examples, we
recommend consulting the documentation page.

Read Using Rust or Python
Although Hudi began its journey in the JVM world, with deep integrations
into JVM-based engines like Spark and Flink, its ecosystem is rapidly
expanding. To support native integration with non-JVM frameworks, the
community has introduced Hudi-rs, a new implementation written in Rust.

The goal of Hudi-rs is to standardize core Hudi APIs and broaden its
adoption across a more diverse range of data systems. Implemented in Rust
and providing Python language bindings, Hudi-rs allows engines from the
Rust and Python ecosystems to work with Hudi tables natively. This
initiative has already led to integrations with modern data frameworks like
Ray and Daft.

For example, you can now run a snapshot query on a Hudi table directly
with the Rust-based query engine Apache DataFusion, as shown in the
following code snippet:

let ctx = SessionContext::new(); 
let hudi = HudiDataSource::new("/base/path/to/the/table").await?; 
ctx.register_table("trips", Arc::new(hudi))?; 

https://oreil.ly/gfH7s
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let df: DataFrame = ctx.sql("SELECT * from trips where city = 
'SF'").await?; 
df.show().await?;

Currently, Hudi-rs is focused on providing read support. However, the long-
term vision is to achieve feature parity with the Java implementation, which
will significantly expand Hudi’s capabilities and use cases within these
growing ecosystems.



ECOSYSTEM INTEGRATION
Hudi has a wide range of support across the data ecosystem. Table 4-3
lists all the projects and products that support read and/or write with
Hudi at the time of writing.



Table 4-3. Hudi’s ecosystem integrations

Project/Product Support

Onehouse.ai Read, write

Apache Spark Read, write

Apache Flink Read, write

Presto Read

Trino Read

Apache Hive Read

DBT Read, write

Apache Kafka, Kafka Connect Write

Apache Kafka Write

Apache Pulsar Write

Debezium Write

Apache Kyuubi Read, write

ClickHouse Read

Apache Impala Read, write

AWS Athena Read

AWS EMR Read, write

AWS Redshift Read



Project/Product Support

AWS Glue Read, write

Google BigQuery Read

Google DataProc Read, write

Azure Synapse Read, write

Azure HDInsight Read, write

Databricks Read, write

Vertica Read

Apache Doris Read

StarRocks Read

Daft Read

Ray Read

As Hudi continues to actively expand its integration across the
ecosystem, this list will keep growing. Please refer to the official page
of ecosystem support.

Summary
In this chapter, we dissected the rich and versatile read capabilities that
make Hudi a powerful framework for the data lakehouse. We began by
exploring how Hudi integrates with query engines, leveraging a data catalog
to provide the necessary table schema and file locations. This integration
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plugs into both the planning phase, where Hudi determines the exact file
slices to read based on the query type, and the execution phase, where it
supports reading the file slices correctly and efficiently.

With that foundation, we reviewed the full spectrum of query types Hudi
supports. We covered snapshot queries for accessing the latest version of
records, and time travel queries, which enable auditing and debugging by
allowing reads of past record versions. We also covered incremental
queries, a fundamental feature for building chained data pipelines that
efficiently propagate changes. This query type supports both latest-state and
CDC modes, with CDC providing rich, row-level insights about every
change.

Finally, we highlighted several advanced features that complete Hudi’s read
capabilities. We discussed streaming reads, which fit naturally with Hudi’s
incremental-first design; schema evolution on read, which addresses the
need for backward-incompatible changes; and the Hudi-rs project, which
extends Hudi’s reach into the Rust and Python ecosystems. Together, these
features provide a robust and flexible set of tools for extracting value from
your data.



Chapter 5. Achieving Efficiency
with Indexing

Lakehouses must be able to manage petabyte-scale datasets with complex,
often unpredictable mutation patterns while maintaining both write
efficiency and query performance. These systems operate at a massive scale
on distributed storage and need to support a mix of analytical and
transactional workloads. To meet these demands, lakehouse tables require
versatile indexing capabilities, similar to OLTP databases. On the write
path, the indexes have to be maintained as new writes happen, and then they
will be used to efficiently locate existing records for updates and deletes
across massive datasets. On the read path, the indexes need to handle
diverse query patterns with equal efficiency: range predicates benefit from
file statistics pruning, equality predicates benefit from index lookups, and
function-based predicates need specialized expression handling.

As of this writing, Apache Hudi is the only lakehouse storage system that
natively supports indexing capabilities. In this chapter, we discuss how
Hudi keeps read and write operations performant at scale, by employing
indexing techniques. We will also see why getting your indexing strategy
right is what makes near-real-time lakehouse performance possible. We’ll
cover:

The essentials of indexing for lakehouse tables, with a look at how
indexing techniques in readers and writers optimize performance

How multimodal indexing works via the Hudi metadata table,
along with the different types of indexes supported

Writer-side indexes specifically designed to optimize write
operations without much storage overhead, with guidance on when
to choose each one



By the end of this chapter, you will have a comprehensive understanding of
Hudi’s powerful and versatile indexing capabilities. More importantly, you
will learn how to analyze your specific workload and select the optimal
index by carefully weighing the trade-offs between performance, cost, and
operational complexity. Hudi abstracts away the formidable engineering
challenge of implementing indexing on distributed storage, allowing you to
focus on making higher-level choices that deliver the best performance for
your use case.

Overview of the Indexes in Hudi
Hudi’s indexes can be broadly categorized into two groups. The first is the
multimodal indexing subsystem, housed within the metadata table, which
provides a variety of indexes that jointly enhance both read and write
performance. The second category consists of specialized writer-side
indexes designed specifically to accelerate write operations in particular
scenarios. Table 5-1 summarizes the most commonly used index types in
Hudi.



Table 5-1. Overview of the most common Hudi index types

Category Index type
Where is it
stored?

Where is it
used?

How
work

Multimodal
index

Files Metadata table Reader &
writer

Provi
partit
file li
suppo
index
query

Partition stats Metadata table Reader Provi
partit
statis
pruni
partit
durin
plann

Column stats Metadata table Reader Provi
level 
for pr
files d
query



Category Index type
Where is it
stored?

Where is it
used?

How
work

Bloom filter Metadata table Reader &
writer

Provi
Bloom
on re
fields
up th
of loc
recor
both 
DML
queri

Record Metadata table Reader &
writer

For re
provi
match
file g
equal
match
predi
recor
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For w
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Category Index type
Where is it
stored?

Where is it
used?

How
work

Secondary Metadata table Reader Provi
match
files f
equal
match
predi
speci
nonre
fields

Expression Metadata table Reader Provi
pruni
capab
based
desig
expre
colum

Writer-side
indexes

Simple Implicitly with
file slices

Writer Perfo
opera
incom
existi
recor
locate
group
updat
delete



In the sections that follow, we will first examine indexing from the
perspective of the write path. We will begin by recapping the high-level
write flow, then delve into the specific index types that optimize write
operations, discussing their ideal scenarios and trade-offs. Subsequently, we
will shift our focus to the read path, where we will review the read flow and
explore the indexes designed to accelerate query planning, again analyzing
their suitable use cases and trade-offs.

Category Index type
Where is it
stored?

Where is it
used?

How
work

Bloom Implicitly with
base files

Writer Perfo
effici
for in
recor
again
existi
recor
Bloom
built 
keys 
range
slices

Bucket Implicitly with
file groups

Writer Locat
exact
group
incom
recor
consi
hashi
techn



Index Acceleration for Writes
When Hudi processes an incoming batch of records, it must efficiently
determine whether each record is a new addition or a modification of an
existing one. This process of mapping an incoming record to its physical
location within the table is effectively what indexing accomplishes for
writes. For updates and deletes, indexing for writes is a critical first step, as
the writer must correctly locate the specific file group containing the record
to be modified.

As illustrated in Figure 5-1, indexing during a write operation consists of
two primary steps:

1. Lookup: The index is queried with the record keys from the
incoming batch to determine the current location of any existing
records.

2. Update: During data writing, the indexes are also updated to reflect
the latest information about the written records.





Figure 5-1. Indexing steps in the write flow

NOTE
Writer-side indexes are stored implicitly as part of the data files in the table, requiring
no explicit maintenance step. However, they cannot be leveraged by queries in a
general-purpose manner.

Because indexing is an integral part of the write path, the choice of
indexing strategy directly impacts overall write performance. An inefficient
index can also create unnecessary overheads, prolonging the entire write
process. Therefore, selecting the optimal index for your workload is
essential for building high-performance data pipelines that can deliver
timely business insights.

In the following sections, we will discuss the most commonly used indexes
and demonstrate how to select the best index for various real-world
scenarios.

General-Purpose Multimodal Indexing
An index that provides a direct mapping from a record key to its physical
location offers the fastest possible lookup. To achieve this, Hudi pioneered
the record index in data lakehouses, a general-purpose, high-performance
indexing solution suitable for most real-world scenarios, especially at large
scale. The record index resides within Hudi’s metadata table, a component
we first introduced in Chapter 2. A thorough understanding of the metadata
table is essential for grasping the mechanics of the record index and other
concepts covered in this chapter. Therefore, we will begin by examining its
structure and functionalities.

Index storage with the metadata table
Located at .hoodie/metadata/ (see Figure 5-2), the metadata table is itself a
Hudi Merge-on-Read (MOR) table. It contains specially designed partitions,
each serving some specific indexing purposes and supporting operations in



the read path, the write path, or both. The metadata table is enabled by
default when a Hudi table is created, and it automatically creates three types
of indexes in three partitions: files in files/ partition (tracks the partition
list and file lists in the table), column stats in column_stats/ partition
(provides file-level statistics), and partition stats in partition_stats/
partition (provides partition-level statistics). The record index resides in the
record_index/ partition and will need to be enabled explicitly.

To ensure that data and its corresponding index entries remain
synchronized, any write to the main data table also updates the metadata
table within the same atomic transaction. Reading from and writing to the
metadata table follows the same flow as any standard MOR table.



Figure 5-2. Organization of the metadata table

The metadata table uses a row-optimized format (HFile) for its base files.
HFile is a sorted immutable key-value file format, similar in structure to a
Sorted String Table (SSTable), that is optimized for high-performance
lookups. It stores records sorted by key and includes an internal, multilevel
index, which allows for retrieving a value without scanning the entire file.
This format is ideal for the metadata table’s typical query patterns, which
often involve batched lookups. For instance, when ingesting a large batch of
records, the record keys can be looked up in batches efficiently against the
sorted data in the HFiles, significantly improving indexing performance.



As an MOR table, the metadata table is well suited to handling high-
frequency writes. To access the most up-to-date index information, index
readers must perform snapshot queries, which merge base files with the log
files. However, an excessive number of log files can degrade read
performance. To mitigate this, Hudi automatically runs compaction on the
metadata table, just as it does for a standard MOR data table. This process,
which we first discussed in Chapter 4, ensures that snapshot query
performance remains optimal. By default, compaction is triggered every 10
writes, a setting that can be adjusted using the
hoodie.metadata.compact.max.delta. com mits configuration.

The metadata table is often called a multimodal index because it houses
diverse types of indexes in its various partitions. As shown in Figure 5-2,
some of the supported index types include files, column stats, partition
stats, record, and secondary. It also supports building indexes using
expressions on specified columns. In the following sections on writer
indexing, we will take a closer look at the record index and other writer-side
indexes. Other indexes that primarily benefit read operations will be
covered in detail in “Index Acceleration for Reads”.

The record index
Hudi’s record index stores the location mappings in the record_index/
partition for every record in the data table. Each entry contains essential
metadata—including the partition path, file ID, and commit time—that
allows the writer to pinpoint the exact file slice containing the
corresponding record (see Figure 5-3). Because writes to the metadata table
are part of the same atomic transaction as writes to the data table, the index
is automatically updated for any inserted, updated, or deleted records,
ensuring that it remains fully consistent. Because the record index serves as
the source of truth for record locations, a lookup that returns no result
indicates that the incoming record is a new insert.



Figure 5-3. Record index lookups return the record location for incoming updates or deletes

In addition to benefiting writers, the record index also drastically boosts
read performance when equality-matching predicates are present; a scenario



we’ll discuss in “Equality Matching”. The record index entries use a fixed
schema and are compressed, resulting in an average size of approximately
48 bytes. To put this into perspective, for a 100 TB table with one billion
records, the record index would also contain one billion entries but would
only consume about 48 GB of storage—less than 0.05% of the total table
size. This low-ratio storage overhead is a modest investment for the
significant performance gains the record index provides, making it a highly
cost-effective solution.

You can enable the record index by setting a table property when you first
create the table:

CREATE TABLE user_profile ( 
    id STRING, 
    name STRING, 
    age INT, 
    update_ts BIGINT, 
    country STRING 
) USING hudi 
TBLPROPERTIES( 
    primaryKey ='id', 
    preCombineField = 'update_ts', 
    'hoodie.metadata.record.index.enable' = 'true' 
) 
PARTITIONED BY (country);

You can also enable or disable the record index for an existing table using
the following SQL commands:

CREATE INDEX record_index ON user_profile (id);  
DROP INDEX record_index ON user_profile; 

You must specify the correct record key fields (id in this example) for
creating the record index. The CREATE INDEX command will trigger
a process to build the record index and bring it into sync with the data
table.
The DROP INDEX command permanently removes the index files and
the record_index/ partition from the metadata table.



TIP
For very large tables, the initial indexing process can be time-consuming. To avoid
blocking subsequent write operations, you can build indexes asynchronously using the
indexing table service, which will be discussed in more detail in Chapter 6.

Writer-Side Indexes
In the following sections, we’ll explore the choice of writer-side indexes for
different write patterns. But first, we’ll take a deep dive into the bucket
index, which is a great choice for real-time write speeds.

The bucket index
Like the record index, Hudi’s bucket index provides a direct record-to-file
mapping, delivering excellent lookup performance. However, instead of
persisting index entries in the metadata table, the bucket index uses a
hashing mechanism to route records to a specific file group. Each record’s
key is hashed to deterministically map it to a “bucket,” which corresponds
to a single file group (see Figure 5-4). This ensures that a given record key
always lands in the same file group, making lookups a constant-time, in-
memory hash computation.



Figure 5-4. Bucket index hashes and maps records to buckets and file groups

The bucket index comes in two variants:

Simple bucket index

This is the default variant, which uses a fixed number of buckets per
partition. It is well suited to handling workloads with predictable data
volumes and works for both Copy-on-Write (COW) and MOR tables.

Consistent hashing bucket index



This variant dynamically resizes the number of buckets to adapt to data
growth or skew, offering greater flexibility for evolving workloads.
However, it is only available for MOR tables.

To use the bucket index, you must set the appropriate configurations before
a write operation. For example:

-- use the simple bucket index 
SET hoodie.index.type=BUCKET; 
SET hoodie.index.bucket.engine=SIMPLE; 
SET hoodie.bucket.index.num.buckets=64; 
 
-- use the consistent hashing bucket index 
SET hoodie.index.type=BUCKET; 
SET hoodie.index.bucket.engine=CONSISTENT_HASHING; 
SET hoodie.bucket.index.min.num.buckets=32; 
SET hoodie.bucket.index.max.num.buckets=128;

The primary advantage of the bucket index is its lightweight design, which
relies on in-memory hash computation rather than lookups against an on-
disk index. Because the hashing function is deterministic, a record’s
location is calculated on the fly, ensuring that the same key is always
mapped to the same file group. This makes the bucket index implicit,
eliminating the need for a separate update step and keeping it perpetually in
sync with the data.

However, being lightweight comes with trade-offs. With the simple bucket
index, the number of buckets is fixed up front, which can lead to data skew
if not chosen carefully. The consistent hashing variant mitigates this by
resizing buckets, but it is only for MOR tables and requires running the
clustering table service (covered in Chapter 6) to rebalance the data, adding
operational complexity. On another note, neither variant has been integrated
with the read path to accelerate equality-matching predicates in the same
way the record index is.

The simple index



In a data warehouse, a dimension table stores descriptive reference data
about business entities, such as user profiles, merchant information, or
product attributes. These tables are typically much smaller than the main
transactional data tables (called fact tables) and change less frequently,
though they may receive small, scattered (random) updates or occasional
deletes (Figure 5-5). Because dimension tables are usually small, they are
often left unpartitioned, though partitioning may be considered based on
factors like query patterns, update frequency, and platform capabilities, not
just table size alone.



Figure 5-5. Random updates in a dimension table

For small to medium-sized dimension tables, the simple and global simple
indexes offer a straightforward and effective solution. As their names imply,



these indexes use a simple mechanism to locate existing records: they
perform a left join between the incoming batch of records and the current
table. While both indexes share this fundamental approach, they differ in
their operational scope. The simple index confines its search for matching
record keys to the relevant data partitions, whereas the global simple index
expands the search across the entire table. For brevity, we will refer to them
collectively as the simple indexes. The mechanics of this process are
illustrated in Figure 5-6.





Figure 5-6. Indexing flow for the simple indexes

The indexing flow involves three main steps:

1. File slice discovery: The index reader queries the files index of the
metadata table to get the latest list of file slices. For the simple
index, it retrieves only the file slices in partitions corresponding to
the incoming records. For the global simple index, it retrieves all
file slices across the entire table.

2. Key extraction: File group readers process the relevant file slices,
extracting only the record key and partition path for each record.
This creates a minimal dataset needed for the join operation.

3. Location tagging: The incoming batch of records is left-joined
against the extracted keys and/or partitions. A successful join
indicates a match, signifying an update or delete, and the record’s
location is tagged. Records that do not find a match are identified
as new inserts.

The effectiveness of this join-based approach hinges on the hit rate—the
proportion of file slices scanned that contain records matching the incoming
batch. For random updates and deletes, which are scattered across many
different file slices, the likelihood that any given file slice contains a
matching record is high. This widespread distribution makes the cost of
scanning all relevant partitions worthwhile, as the broad scan is more likely
to yield matches. In essence, the more randomly distributed the updates are,
the more efficient the simple indexes become.

While the simple index is the default, you can explicitly configure it or the
global simple index before a write operation:

-- use simple index (default) 
SET hoodie.index.type=SIMPLE 
 
-- use global simple index 
SET hoodie.index.type=GLOBAL_SIMPLE



The simple indexes, like the bucket indexes, are also implicitly stored with
data—as long as the file slices are created properly, they are ready for future
indexing lookups, which simply load the files themselves.

However, the performance of the join-based indexing process can degrade
for tables with large numbers of file slices. This is particularly true for the
global simple index, which must scan every file group in the table for the
latest file slices. Even though the operation only loads record keys and
partition paths, performing a large-scale join against even a small input
batch can be time-consuming and become a bottleneck for the entire write
operation.

The bloom index
Fact tables, which typically store transactional data, are often partitioned by
temporal fields like a creation date. For example, an orders table might
be partitioned by the day the order was created. In such scenarios, writes are
often heavily skewed: most new data, including updates and deletes, targets
the most recent partitions (e.g., the current day), while a smaller volume of
late-arriving data might be written to older partitions (Figure 5-7).



Figure 5-7. Skewed updates in a fact table



For workloads with this skewed write pattern, the bloom and global bloom
indexes offer an effective solution. These indexes leverage a probabilistic
data structure called a Bloom filter to quickly determine a key’s
nonexistence in a target file, avoiding unnecessary file reads. Additionally,
they use the minimum and maximum values of record keys stored with the
data files to further narrow down the candidate files whose Bloom filters
need to be checked. Similar to the simple and global simple indexes, the
bloom index operates on relevant partitions, while the global bloom index
works across the entire table. For brevity, we will refer to them collectively
as the bloom indexes. The detailed flow is shown in Figure 5-8.





Figure 5-8. Indexing flow for bloom indexes

The indexing flow involves these main steps:

1. File slice discovery: This step is the same as for the simple
indexes. The files index in the metadata table is queried to retrieve
a list of relevant file slices—either from matching partitions for the
bloom index or from the entire table for the global bloom index.

2. File slice pruning: This is the key step where the Bloom filters are
used. For each of the candidate file slices narrowed down using
record key ranges, a Bloom filter is read from the footer of the base
file. A Bloom filter is a space-efficient probabilistic data structure
that can say whether an element is definitively not in a set or may
be in the set, with a tunable false-positive rate. By checking the
incoming record keys against these filters, Hudi can create a
pruned list of file slices that is guaranteed to contain the incoming
updating and deleting records.

3. Key extraction: This step is the same as for the simple indexes. File
group readers will extract the record keys and partitions from the
pruned file slices for the next step.

4. Location tagging: This step is the same as for the simple indexes.
The incoming records are left-joined against the record keys and/or
partitions extracted from step 3. A successful join tags the record
as an update/delete, while a failed join indicates a new insert.

NOTE
Only the base file in a file slice uses its footer block to store the Bloom filter for the
records in that file. When pruning file slices, we do not need to consider log files in the
case of MOR tables, because only updates and deletes are saved in log files (except
when using the bucket indexes). In other words, the Bloom filter saved for the base file
can represent the file slice and perform the existence check correctly.



The efficiency of the bloom indexes comes from their ability to leverage
Bloom filters to dramatically improve the hit rate for skewed workloads.
When updates are concentrated in a few partitions, the Bloom filters
retrieved from all other partitions can quickly confirm that they do not
contain the target records. This allows the bloom indexes to skip reading the
vast majority of file slices, focusing the expensive join operation only on
the small subset of file slices that are likely to contain matches. This
filtering process, which only involves reading lightweight base file footers,
makes the bloom indexes a highly efficient choice for skewed update and
delete patterns in even large tables.

The bloom and global bloom indexes can be configured before a write
operation as follows:

-- use bloom index 
SET hoodie.index.type=BLOOM 
 
-- use global bloom index 
SET hoodie.index.type=GLOBAL_BLOOM

Like the simple indexes, the bloom indexes are updated implicitly. The
Bloom filter for a given base file is stored in its footer and written as part of
the same operation that writes the data, ensuring that the index is always
synchronized.

In workloads with random update patterns, the bloom indexes’ performance
can be worse than that of the simple indexes. This is because the
widespread distribution of record keys across many file groups increases
the probability of the Bloom filter saying that an element may be in a set,
causing less file slice pruning. When this occurs, the index still has to read
and join against a large number of file slices, making the Bloom filter
loading and pruning step an unnecessary overhead.

Furthermore, the bloom indexes can incur performance overhead with
tables that contain a very high number of file slices. While the Bloom filters
can be effective at pruning the search space, the initial step of reading the
footers from every candidate base file can itself become a bottleneck. This



is especially true for the global bloom index, which must consider every file
group in the table. The cumulative I/O from reading numerous file footers
can slow down the overall write operation.

Comparison of Writer Indexing Choices
So far, we have explored four main writer index types: record, bucket,
simple, and bloom. Understanding their respective strengths, weaknesses,
and ideal use cases is critical for achieving optimal write efficiency for your
Hudi tables. Each index type offers a unique approach to locating records,
with distinct trade-offs in performance, cost, and operational complexity.

To help guide your selection process, Table 5-2 provides a side-by-side
comparison of their key characteristics.



Table 5-2. Writer index summary

Index type Pros Cons

Record
General-purpose,
high-performance
indexing

Works well for
tables at all sizes
and all workload
patterns

Helps speed up
equality-matching
queries

Easy management
with SQL
commands

Incurs some
storage
overhead

Requires
additional
index
maintenance
overhead

Bucket
Fastest option for
update-heavy write
workloads

Works well for
tables of all sizes

No storage
overhead

Can result in a
table storage
layout that is
not optimal for
queries (e.g.,
losing temporal
locality for
queries)

Consistent
hashing bucket
index only
works for
MOR



Index type Pros Cons

Simple
Simple and has no
storage or index
maintenance
overhead

Leverages all the
join optimizations
in the query engine

Applicable for
random
update/delete
patterns

Does not
perform well
for skewed
update/delete
patterns

Not suitable for
large-scale
tables



Index type Pros Cons

Bloom
Performs well for
skewed
update/delete
patterns

Suitable even for
very large tables
because index
lookup scales
proportionally to
incoming write
patterns and not
table size

Incurs small
storage and index
maintenance
overhead to store
Bloom filters and
key ranges

Does not
perform well
for random
update/delete
patterns

As the table illustrates, the optimal choice depends heavily on your specific
workload, including table size, update patterns, and performance
requirements.

Hudi also offers the flink state index, which works similarly to the record
index. The difference is how the indexing data is stored. Unlike the record
index, which uses the metadata table that leverages the same storage space
as the data lakehouse uses, the flink state index stores the record location
mappings in the Apache Flink writer job’s storage backend database.

We have briefly discussed global and nonglobal indexes, a concept rooted
in the scope of a record key’s uniqueness. When configuring a Hudi table



for upserts, you must define the record key fields, which Hudi uses to
uniquely identify records. For partitioned tables, you also define partition
path fields. The scope of a record’s uniqueness is determined by whether
the record key is unique across the entire table or only within its specific
partition. This distinction is critical, as it dictates which type of index—
global or nonglobal—is appropriate for your workload. Lakehouse tables
can be 10 to 100 times bigger than Relational Database Management
System/online transaction processing (RDBMS/OLTP) tables, and for such
large data volumes, nonglobal indexes help scale index lookups with
knowledge of the partition a record key resides in. Depending on your
data’s characteristics, your table will fall into one of two scenarios:

Scenario 1

The record key can be solely used to determine the record’s uniqueness;
that is, there won’t be more than one record with the same record key
across all partitions in the table.

Scenario 2

The record key and partition path fields need to be used jointly to
determine the record’s uniqueness; that is, the same record key may
appear in different partitions. This also means that the user is expected
to supply both the key and partition path for write operations.

Because both scenarios are dependent on data, Hudi introduces the notion
of global and nonglobal indexes: if scenario 1 applies to you, choose a
global index for your writer, and if scenario 2 applies to you, choose a
nonglobal index. Table 5-3 summarizes this property for the writer indexes.



Table 5-3. Global and nonglobal writer indexes

Index type Is it global?

Simple No

Global simple Yes

Bloom No

Global bloom Yes

Bucket (simple) No

Bucket (consistent hashing) No

Record Yes

A global index expects uniqueness across all partitions, and therefore its
lookup process may involve scanning files over the whole table. The
performance may degrade when the table size grows for global simple
index, while record index won’t be impacted too much due to its design of
providing direct key-to-file mappings.

A nonglobal index expects uniqueness only within partitions; hence, simple
and bloom indexes are generally more performant than their global
counterparts, because the lookup scanning space is reduced to relevant
partitions of the incoming records.

NOTE
The notion of global and nonglobal indexes is only applicable to writer indexes. There is
no such notion for reader indexes, because when we read data, we always want to fetch
the matching records (including partition matching) across the table.



If scenario 1 applied to you and you chose a nonglobal index like simple or
bloom, it could lead to data correctness issues as the index lookup would
only involve the partitions relevant to the incoming records. If scenario 2
applied to you and you chose a global index like global simple or global
bloom, you would waste compute resources scanning unnecessary files
during lookup. The rule of thumb is to understand your data so that you can
make the right choice between global and nonglobal indexes.

TIP
For nonpartitioned tables, the entire table can be seen as having a single partition with
an empty string as the partition path. Therefore, either a global index or its nonglobal
counterpart will work for it as they are functionally equivalent.

Index Acceleration for Reads
As we discussed in Chapter 4, Hudi’s integration with query engines
leverages its indexing component to optimize the list of file slices returned
during the query planning phase (Figure 5-9). In most cases, this indexing
component is the metadata table, which is enabled by default. If the
metadata table is disabled explicitly by setting
hoodie.metadata.enable to false when creating the table, you
will not benefit from the powerful read-size indexing capabilities we are
about to discuss.



Figure 5-9. Query engine integration uses the metadata table to optimize planning



In the previous sections on writer indexes, we introduced the metadata table
as a multimodal index. Its true multimodal nature comes from its ability to
provide versatile indexes that maximize optimization opportunities based
on the available query filters, jointly enhancing the read process.

Data Skipping
Analytical SQL queries in production environments almost always contain
predicates to filter data, such as A >= X or B BETWEEN Y AND Z.
Query engines can push these predicates down to Hudi’s query engine
integration layer, which then uses indexes in the metadata table to optimize
the query plan by minimizing the number of files to be read.

Three indexes—files, column stats, and partition stats—work in concert to
achieve this file pruning. We will examine each one individually before
demonstrating how they collaborate in the optimization flow.

The files index
As we saw in the write path, the files index provides writers with a list of
file slices for lookups. It serves a similar function in the read path, offering
a complete and up-to-date list of all partitions in the table and the file slices
within each. This list serves as the initial candidate set that will be pruned
using the applicable query predicates.

Without the files index, both readers and writers would need to perform
expensive and time-consuming file system listing operations to discover the
table’s contents. Because this partition and file information is fundamental
to nearly all Hudi operations, the files index is always available whenever
the metadata table is enabled.

The column stats and partition stats indexes
The column stats and partition stats indexes store statistics that enable data
skipping, a powerful optimization for accelerating queries. For example, if
the statistics for a data file show that the maximum value for column A is



100, the query planner can safely skip reading that file entirely when
processing a query with the predicate A > 100.

The column stats index maintains file-level statistics, including the
minimum and maximum values, total value count, and null count for
columns within each file slice. The partition stats index stores similar
statistics but aggregated at the partition level.

Both indexes are enabled by default and are updated automatically with
each write operation, ensuring that the statistics remain synchronized with
the data. You can, however, disable them during table creation or for a
specific write job by setting the following properties to false:

hoodie.metadata.index.column.stats.enable

hoodie.metadata.index.partition.stats.enable

NOTE
The partition stats index depends on the column stats index. Therefore, you must enable
column stats to use partition stats, although you can use column stats independently.

The pruning process
Putting all three indexes together, we can get a full picture of how files are
pruned during the optimization process (Figure 5-10):





Figure 5-10. File pruning process

1. The files index is queried to get a list of partitions.

2. Based on the passed-down predicates, partition stats is queried to
prune out the partitions whose statistics fall out of the ranges. If
partition values are available in the predicates, those partitions will
be selected or filtered out directly.

3. The pruned partitions are then used as arguments for the files index
to get file lists for those partitions.

4. Similar pruning logic is applied based on the predicates to the files
using column stats.

5. The final pruned file list is returned to the query engine for further
processing.

By default, the first 32 columns will be indexed and stored in column stats
and partition stats. This is to avoid unnecessary indexing overhead for wide
tables with hundreds of columns. You can change this cap number by
setting this config:

hoodie.metadata.index.column.stats.max.columns.to.index=20

It often makes more sense for you to choose specific columns for indexing.
For a table order that contains customer order information such as price and
shipping date, you may configure just the price and shipping_date
to speed up frequent queries asking for price > 300 or
shipping_date BETWEEN Date‘2025-06-01’ AND
Date‘2025-06-30’:

hoodie.metadata.index.column.stats.column.list=price,shipping_dat
e



NOTE
When hoodie.metadata.index.column.stats.column.list is set, the
config
hoodie.metadata.index.column.stats.max.columns.to.index will
be ignored.

Equality Matching
Your queries may contain equality-matching predicates like A = X or B
IN (X, Y, Z). While file pruning will also be effective for these, a
more efficient approach is to find the exact file slices that contain those
column values.

The record index
In earlier sections, you learned that the record index stores the exact
mappings for a record key and its enclosing file slice. This is efficient not
just for Hudi writers to find file groups for writing data, but also for Hudi
readers to speed up queries that contain equality-matching predicates with
the record key field being the left operand.

As long as the configured record index is active, queries with the applicable
equality-matching predicates will be optimized by it—the mapped file
slices will be directly used for any further pruning, speeding up the whole
planning process.

The secondary index
When a query predicate uses an equality match on a nonrecord key field
(e.g., name = 'X'), the record index cannot be used to locate the relevant
files. To address this, Hudi provides the secondary index. A secondary
index functions as an inverted index, storing a mapping from the values in a
nonrecord key field to their corresponding record keys.

For a query with an applicable predicate, Hudi first queries the secondary
index to retrieve the set of matching record keys. It then uses the record



index to find the specific file slices containing those keys. Because of this,
you must have the record index enabled to use a secondary index.

For example, consider a user_profile table where a record has id =
'001' and name = 'X'. If you create a secondary index on the name
column, an entry mapping 'X' to '001' is created. A lookup for name =
'X' will efficiently find the record key '001' in the secondary index and
then use the record index to locate the exact file slice containing that user’s
record.

You can create multiple secondary indexes, each on a different nonrecord
key field:

CREATE INDEX idx_on_name ON user_profile (name);

For each secondary index, Hudi creates a dedicated partition in the
metadata table, prefixed with secondary_index_, to store the index
entries. The name you provide in the CREATE INDEX command (e.g.,
idx_on_name) is used as part of the partition name, making it easy to
manage multiple indexes. The name record_index is reserved and
cannot be used.

To remove a secondary index, you can use the DROP INDEX command:

DROP INDEX idx_on_name ON user_profile;

The use of HFile for the metadata table’s base files is particularly
advantageous for secondary indexes. The lexicographically sorted keys in
HFile allow for efficient prefix lookups, which works well when multiple
record keys map to the same secondary key value. However, the secondary
index delivers the best performance on high-cardinality columns, where
there are many unique values, leading to more selective 1-to-1 mappings.
For low-cardinality columns (e.g., a Boolean field), a secondary index is
less effective, as it will not significantly narrow down the candidate file
slices. The Hudi community is actively developing a bitmap index to better
handle these low-cardinality scenarios.



Indexing on Expressions
Queries often apply inline transformations to columns within their
predicates, such as:

SELECT * FROM user_profile 
WHERE from_unixtime(update_ts, 'yyyy-MM-dd') = '2025-06-01';

In this scenario, a standard column stats index on the update_ts column
would be ineffective, as the predicate operates on the result of the
from_unixtime function, not the raw column value. Adding a new,
derived column to the table just to support this query is inefficient, as it
adds storage overhead and becomes useless if a different date format is
needed.

To solve this, Hudi provides the expression index, which extends the power
of data skipping to predicates that contain functions.

The expression index with column_stats
By creating an expression index of type column_stats, you instruct
Hudi to compute and store statistics on the transformed column values. For
the example with user_ pro file, you could create the following index:

CREATE INDEX update_date ON user_profile 
USING column_stats(update_ts) 
OPTIONS(expr='from_unixtime', format='yyyy-MM-dd');

With this index in place, Hudi will pre-compute the min/max values for
from_ uni xtime(update_ts, 'yyyy-MM-dd') for each file slice.
When a matching query is executed, the file pruning process can use these
specialized statistics to effectively perform skipping, just as it would with a
standard column stats index.

Each expression index creates a dedicated partition in the metadata table,
prefixed with expr_index_. You can manage them using the DROP
INDEX command:



DROP INDEX update_date ON user_profile;

This type of index supports a wide range of functions, including lower,
regexp_extract, and concat. For a complete list, refer to the
documentation page.

The expression index with bloom filter
Expression indexes can also be of type bloom_filter. This creates a
Bloom filter for each file slice based on the transformed values of a column,
which is useful for accelerating equality checks. For example, you could
build an index to support case-insensitive lookups:

CREATE INDEX idx_bloom_name ON user_profile  
USING bloom_filters(name) OPTIONS(expr='lower'); 
 
DROP INDEX idx_bloom_name ON user_profile;

This index stores a Bloom filter of the lowercase name values for each file.
A query with a predicate like WHERE lower(name) = 'x' can then
use this index to quickly eliminate file slices that do not contain the value x.

Like the secondary index, the bloom_filter expression index is most
effective on high-cardinality columns. The more unique the values are, the
higher the probability that a given value does not exist in a file slice, which
is the ideal scenario for Bloom filter pruning. The effectiveness of this
index can be further enhanced by using the clustering table service (a topic
covered in Chapter 6) and sorting the data by the indexed column. This
concentrates similar values into fewer file slices, increasing the number of
file slices that can be skipped during a query.

Build the Right Indexes
The metadata table provides a powerful and versatile indexing framework
to help query engines fully optimize their query plans. However, it is crucial
to select and build indexes judiciously based on your data and query
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patterns. Creating unnecessary indexes can slow down the write process, as
each index must be updated with every commit, without providing a
corresponding benefit to read performance.

Pay special attention to storage overhead with indexes like the record index
and secondary indexes, which grow in proportion to the number of records
in the table. Creating secondary index on too many columns can lead to
excessive storage consumption.

Furthermore, be aware of overlapping capabilities. Both the secondary
index and the bloom_filter expression index can accelerate equality-
matching predicates. For a given column, you typically only need one. The
secondary index generally offers superior performance by narrowing the
search to the exact file slices containing the data. In contrast, the
bloom_filter only enhances the pruning of candidate file slices. The
trade-off is storage: the secondary index is more precise but consumes more
space with O(number of records) complexity, whereas Bloom filters at the
file level are more space efficient.

Summary
This chapter began with a deep dive into writer indexes, starting with the
need for general-purpose, high-performance indexing. This led us to the
metadata table, the foundation for Hudi’s most powerful indexing solutions.
We explored the record index as a fast, scalable option for most workloads
and compared it with the lightweight, hashing-based bucket index. We then
addressed specific write patterns, introducing the join-based simple indexes
for random updates and the filter- and join-based bloom indexes for skewed
updates. Finally, we summarized the writer indexes, comparing their
characteristics and discussing the important distinction between global and
nonglobal scopes.

Shifting to the read path, we continued our exploration of the metadata
table’s multimodal capabilities. We demonstrated how the files, column
stats, and partition stats indexes work together to enable effective file



pruning for range-based queries. For equality-matching predicates, we
noted that the record index also accelerates reads, and we introduced the
secondary index to provide fast lookups on nonrecord key fields. Lastly, we
extended Hudi’s pruning power to predicates with functions by introducing
the expression index, which supports both column_stats and
bloom_filter types to optimize for an even wider range of predicates.

Hudi’s indexing capabilities are continuously evolving to meet new
challenges. The community is actively developing new indexes, such as
bitmap index to provide efficient filtering on low-cardinality columns, and
vector search index to support similarity searches on unstructured data for
AI applications. The metadata table’s flexible architecture provides a robust
and extensible foundation, ensuring that Hudi can readily incorporate these
and other versatile indexes in the future.



Chapter 6. Maintaining and
Optimizing Hudi Tables

Just as we regularly maintain a house to keep it in optimal condition,
maintaining Apache Hudi tables is essential for a well-functioning data
lakehouse. Just as a house requires regular sorting, decluttering, and
reorganization to remain spacious and easy to navigate, tables must also be
periodically reviewed and organized to keep them efficient and accessible.

When writing data, users often focus more on minimizing read and write
delays than on perfectly organizing the data, and this is a serious oversight,
especially for high-throughput tables. As we discussed at the beginning of
Chapter 1, Hudi is conceived as a data lakehouse platform that can
anticipate such pitfalls and guard against them from the get-go. This saves
users from inefficiencies and difficulties in operating their data lakehouses
later on.

For instance, unmaintained Hudi tables can suffer from:

Increased storage costs

Too many small files lead to high storage access latencies and
inefficient compression on storage, increasing storage costs for the
lakehouse. Too many objects in cloud storage can also balloon storage
API costs.

Slow query performance

Suboptimal table organization can result in long query execution times,
due to an unclustered and poorly partitioned data layout. Large numbers
of small files also contribute to metadata bloat, especially for
lakehouses retaining multiple versions of a table.

Increased compute costs



Without index maintenance, writers and queries can end up scanning the
entire table to locate records of interest, holding compute resources for
long durations and contributing to extremely high compute cluster
charges.

High read amplification

Without frequent compaction to control log file growth, queries on
Merge-on-Read (MOR) tables can suffer from having to read too much
data each time.

Just as you shouldn’t let your home become completely disorganized before
taking action, proactive table maintenance is crucial for ensuring optimal
data accessibility and query performance.

This is where table services come into play. These services perform regular
maintenance operations to keep the data lakehouse clean, organized, and
efficient. Without them, our data lakehouse could become an inefficient
data swamp—technically containing everything we need but making it
frustratingly difficult to find and access specific items quickly.

In this chapter, we will explore the world of Hudi’s table services,
automated built-in platform services that render the essential maintenance
operations for your data lakehouse. We will begin by defining what these
services are and explaining their fundamental role in maintaining healthy,
high-performance tables. Next, we will examine the various ways these
services can be deployed to suit different operational needs. The core of the
chapter is a deep dive into four key table services—compaction, clustering,
cleaning, and indexing—that work together to keep your data lakehouse
running at peak efficiency. By the end of this chapter, you will have a
comprehensive understanding of how to maintain and optimize your Hudi
tables effectively.

Table Service Overview



Table services in Hudi are a suite of software services designed to optimize
and manage data after it has been written or based on a configurable table
service strategy. For example, one strategy can define that the table be
periodically sorted based on a particular column often used in common
queries.

Unlike regular write operations that add new records, table services focus
on housekeeping tasks that improve storage layout, streamline the table’s
structure, and enhance future query performance. Figure 6-1 shows a high-
level overview of the table service workflow.



Figure 6-1. Overview of the table service workflow

A typical table service operation is a two-step process: first, scheduling
creates a comprehensive maintenance plan detailing how to achieve the
maintenance goal, and then, execution carries out that plan to make actual
changes to the table. To accommodate different operational needs and
constraints, Hudi offers three deployment modes for table services: inline,
async execution, and standalone. Let’s explore the characteristics of each
mode to help you choose the right approach for your use case.



Deployment Mode: Inline
With the inline mode, table services run synchronously within the same
writer job, immediately following the triggering write operation (Figure 6-
2). This is the simplest deployment model, as it bundles the table service
tasks—first scheduling, then execution—with the data write, ensuring that
the table is consistently optimized without requiring separate jobs or
infrastructure. Think of it as an all-in-one process where housekeeping
happens automatically with every write commit.

It’s important to understand that while the table service runs inline or in any
other mode, it’s making changes to the table, which will be recorded as
actions on the Hudi timeline. For example, after a commit action from the
write operation is completed, the configured cleaning table service under
the inline mode will begin, creating its own clean action. This distinction
clarifies that the table service operation is a distinct transaction, not part of
the triggering write.



Figure 6-2. Table service inline deployment mode

The actions made by a table service also go through the same states as any
Hudi actions do: requested => inflight => completed. The maintenance
operation plan, containing information like which file groups to work with,



is written in the requested instant of the table service action, making the
execution step idempotent in the case of retries, as the retries execute prior
to pending operation plans, before new ones are scheduled or executed. The
action will be transitioned to a completed state after the execution finishes
successfully.

The inline mode keeps things very simple, sidestepping all concurrency
between the writer and table services. The simplicity of using the inline
mode comes with a trade-off. Because table services run sequentially after
the write, they can introduce latency to the overall write process.
Furthermore, because both writing and maintenance share the same
compute resources, this may not be the most efficient allocation. For
instance, a large cluster provisioned for a heavy write workload might be
under utilized when performing a lightweight table service, leading to
wasted resources.

Deployment Mode: Async Execution
The async execution mode takes a hybrid approach by keeping the
scheduling part inline with writes while executing the table service plan
asynchronously (Figure 6-3). That is, the table service plan will be made
synchronously after the write operation, while the execution is to be
conducted by a separate job. This option makes a lot of sense when you
consider the fact that scheduling, which is about reading the metadata of file
groups and creating a plan, is typically a lightweight operation compared to
the I/O-intensive execution. By keeping scheduling inline, we maintain
tight coordination with write operations and simplify orchestration.
Meanwhile, the heavier execution workload runs separately, allowing you
to:

Optimize resource allocation by using dedicated compute resources
for the execution workloads.

Unblock your write pipeline for faster data writes.

Scale execution resources independently of your write resources.



Figure 6-3. Table service async execution deployment mode



By striking this balance between coordination and resource optimization,
the async execution mode offers a practical middle ground for many
production deployments. Still, the scheduling time of gathering file groups’
metadata and composing a plan based on the configured table service
strategy won’t be negligible and will inevitably slow down the writer
process to some extent. For applications that aim for the most optimal write
latency, the async execution mode may not be the best choice. Hudi tools
like Hudi Streamer and Hudi Flink Streamer for Apache Flink offer
convenient built-in async execution that executes table services in separate
resource pools within the same compute cluster.

Deployment Mode: Standalone
The standalone mode offers the highest level of flexibility by fully
decoupling both table service scheduling and execution from writer
processes (Figure 6-4). In this mode, you can:

Run the scheduling and execution completely independent of the
write processes.

Implement sophisticated scheduling strategies that consider
resource availability and table priorities.

Scale your table service infrastructure separately from your data
pipeline.

This approach recognizes that housekeeping operations don’t need to be
tied to write frequency or be run on the same compute resources. Instead,
they can be managed as a centralized platform maintenance effort, running
on a custom cadence—such as every few minutes, every few hours, or
nightly—to optimize tables across the lakehouse. Think of the standalone
mode as a dedicated maintenance crew that operates independently from the
regular ingestion/ETL team. This crew can assess, plan, and execute
optimization tasks across all the tables on its own schedule and using its
own resources, ensuring maximum efficiency and control.



Figure 6-4. Table service standalone deployment mode



The flexibility of standalone mode does come with additional operational
complexity—you’ll need to manage separate infrastructure and set up a
lock provider to coordinate the concurrent write and table service jobs to
ensure proper transactionality in those actions. We will discuss lock
providers in Chapter 7. For large-scale lakehouse deployments, this
investment often pays off through better resource utilization and more
optimized maintenance schedules.

Choosing a Suitable Mode
Choosing a deployment mode is a matter of providing the right
configurations to your Hudi writer and table service jobs:

Inline mode

Supply all table service configurations directly to your writer job. This
instructs the writer to handle both scheduling and execution.

Async execution mode

Provide scheduling-related configurations to the writer job. The writer
job then submits another job with execution-related configurations to
execute the table service plan asynchronously.

Standalone mode

Provide all scheduling and execution configurations to a dedicated,
runnable application supplied by Hudi, which operates independently of
any writer job. Additionally, for both writer and table service jobs, you
will need to provide configurations to specify the lock provider’s
properties.

Each deployment mode represents a different point on the spectrum
between operational simplicity and flexibility. While the inline mode offers
a straightforward “set it and forget it” approach that is perfect for smaller
deployments, the async execution and standalone modes provide
increasingly sophisticated options for larger-scale operations where



resource optimization becomes crucial. Table 6-1 provides a quick
comparison of the deployment modes.

Table 6-1. Deployment modes comparison

Feature Inline
Async
execution Standalone

Operational
complexity

Minimal Medium High

Scheduling and
execution flexibility

Low Medium High

Increased write
latency

High Low Minimal

Facilitates resource
optimization

Low Medium High

With a clear understanding of these trade-offs, you can select the
deployment mode that best aligns with your operational needs and data
processing requirements. The upcoming sections will explore Hudi’s four
primary table services in detail. For each service, we will cover its purpose
and mechanics, provide sample configurations for inline mode, and point to
the official documentation for additional examples.

Compaction
As we discussed in previous chapters, MOR tables excel at fast ingestion by
writing updates and deletes to row-based log files. However, this design
introduces a query-time trade-off. As log files accumulate, snapshot queries
must merge them with the base file on the fly, a process that can degrade
read performance.



Compaction is the table service designed to solve this problem specifically
for MOR tables. It merges a base file with its corresponding log files to
produce a new, versioned base file containing the latest state of the data
(Figure 6-5). This process effectively converts any row-based updates and
deletes into an optimized, columnar format, dramatically improving
snapshot query performance while preserving the high write throughput of
MOR tables.





Figure 6-5. Compaction process

Comparing the MOR compaction process with the Copy-on-Write (COW)
write process provides a clear perspective on their fundamental differences
(Figure 6-6). In COW tables, any update or delete triggers a commit action
that rewrites the entire file slice. In contrast, MOR tables efficiently append
these changes to log files, and compaction runs periodically to merge them
with the base file, optimize the file slice for reading, and produce a
commit action. In essence, a COW table performs an implicit compaction
with every write, which is functionally equivalent to an MOR table
configured to run inline compaction after every deltacommit action.





Figure 6-6. Compaction in an MOR table versus write (upsert) in a COW table

You can tune the compaction process by selecting a cadence and strategy
that align with your table’s update frequency and volume. Let’s explore the
available configuration options.

TIP
As of this writing, Hudi is the only lakehouse storage system capable of asynchronously
compacting files without blocking or failing a concurrent writer process that is also
updating the same record in the same file group. This makes Hudi stand out as the
preferred choice for near-real-time replication of mutable data streams like Relational
Database Management System (RDBMS) change data capture (CDC) logs or frequently
updating incremental ETL pipelines.

Schedule Compaction
Compaction is triggered based on a configurable strategy that is set using
hoodie. com pact. inline.trigger.strategy. Hudi offers
several options to control when compaction is scheduled:

NUM_COMMITS

The default strategy. Triggers compaction after a specified number of
deltacommit actions (default is 5) have occurred since the last
completed compaction.

NUM_COMMITS_AFTER_LAST_REQUEST

Triggers compaction after a specified number of deltacommit
actions since the last compaction was either requested or completed.
This provides a more stable cadence than NUM_COMMITS by
preventing new compaction plans from being scheduled if a previous
one has failed or is still pending, thus avoiding a backlog of compaction
requests.

TIME_ELAPSED



Triggers compaction after a configured number of seconds have elapsed
since the last completed compaction.

NUM_AND_TIME

Triggers compaction only when both a minimum number of
deltacommit actions have occurred and a minimum amount of time
has passed. This strategy prevents compaction from running either too
frequently or too infrequently.

NUM_OR_TIME

Triggers compaction when either a minimum number of
deltacommit actions have occurred or a minimum amount of time
has passed. This flexible approach ensures that compaction runs
regularly, preventing long delays.

Once triggered, the execution of the compaction plan is guided by a
specific strategy, which you can define using
hoodie.compaction.strategy. This setting determines how
Hudi identifies and prioritizes file slices for compaction. Some
commonly used strategies are:

LogFileSizeBasedCompactionStrategy

The default strategy; prioritizes file slices with the largest total size of
log files, targeting those with the most unmerged data. It includes a
configurable threshold to select file slices based on a minimum log file
size (default is 0) and caps the total data to be processed (default is 500
GB) in a single run to manage I/O and memory consumption.

LogFileNumBasedCompactionStrategy

Prioritizes file slices with the largest number of log files. This approach
is effective for targeting file slices that have accumulated many small
updates. Like the size-based strategy, it provides a threshold to select
file slices but based on a minimum log file count (default is 0). It also



caps the total data to be processed (default is 500 GB) to control
resource usage.

PartitionRegexBasedCompactionStrategy

Selects partitions for compaction by matching their path against a
regular expression. This allows you to run targeted compaction jobs on
specific groups of partitions, which is useful for applying different
maintenance policies across your data.

The following example shows a sample configuration set for inline
compaction. Using this, compaction is triggered after 10 deltacommit
actions. It uses the LogFileNum Ba sedCompactionStrategy to
prioritize file slices with the highest number of log files, selecting any file
slice with at least one log file. Finally, it caps the total I/O (including both
reading and writing file slices) for the compaction run at 100 GB to manage
resource consumption:

hoodie.compact.inline=true 
hoodie.compact.inline.max.delta.commits=10 
hoodie.compact.inline.trigger.strategy=NUM_COMMITS_AFTER_LAST_REQ
UEST 
hoodie.compaction.strategy=\ 
org.apache.hudi.table.action.compact.strategy.LogFileNumBasedComp
actionStrategy 
hoodie.compaction.logfile.num.threshold=0 
hoodie.compaction.target.io=102400

To provide more flexibility, Hudi also offers
CompositeCompactionStrategy to chain multiple strategies
together, applying AND logic to select candidate file slices. For full
customization, you may also implement the CompactionStrategy API
and supply your own strategy for the compaction scheduler.

Execute Compaction



If you configured the compaction for inline mode, the execution will start
immediately after the plan being generated by the scheduler. The same
writer job, like Apache Spark or Flink, will continue to run the compaction.
If you configured it for async execution mode, the writer job will submit
another job for the execution to run asynchronously. If you configured it for
standalone mode, you’ll need to set up another job, leveraging Hudi’s utility
application, like HoodieCompactor for Spark or
HoodieFlinkCompactor for Flink, to execute the compaction plan.
For more examples, please refer to the documentation page.

Compaction is inherently resource intensive for several reasons:

The merge process is compute intensive, requiring substantial CPU
resources to combine and sort records.

It could involve reading large volumes of data from both base files
and log files.

Depending on the plan, it could generate many new base files
simultaneously during the rewrite process.

These characteristics make compaction fundamentally different from
regular write operations that are typically performed on MOR tables. While
writes tend to be frequent, smaller operations that can run efficiently on a
modest cluster, compaction behaves more like a batch processing job that
benefits from dedicated computing resources. Understanding this
distinction is crucial for resource planning at scale.

Clustering
Clustering in Hudi optimizes data layout by grouping similar records
together to improve query performance and storage efficiency in your data
lakehouse. It addresses the challenges of small files and record organization
by consolidating and sorting data based on specified columns.

When writing data at high velocities, especially in streaming scenarios, we
often accumulate many small files to maintain low latency. While this
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approach helps achieve faster data freshness, it can significantly degrade
query performance as systems need to open and process many small files
instead of fewer larger ones. Even with the small-file handling feature
introduced in Chapter 3, tables may still suffer from under-optimized
storage layout due to having undesired initial file group allocation and the
small-file handling not being able to improve the data proximity by sorting.
Clustering solves this by intelligently consolidating small files into
optimally sized ones while sorting records based on specified columns to
maintain good proximity.

This principle of “proximity” means that records sharing common values
for columns are physically stored together. For instance, in a sales dataset,
clustering by region would place all sales records for California into the
same file or a small set of nearby files. As a result, a query filtering for
sales in that region can read a minimal amount of data to dramatically
improve performance.

The clustering process in Hudi reorganizes data by identifying eligible file
slices, reading the records, sorting them based on specified columns, and
rewriting them into new, optimized file groups (Figure 6-7). This provides
two key benefits:

Enhanced data skipping

By physically grouping related records, clustering allows query engines
to bypass entire files that do not contain relevant data. For example, if
your queries frequently filter by date ranges, clustering by date
significantly increases the chance that records from the same day are
stored together, enabling the engine to quickly skip files outside the
requested range.

Improved compression

Storing similar data together improves the efficiency of columnar
formats like Apache Parquet. When values in a column are alike, they
can be compressed more effectively, reducing storage costs.



Figure 6-7. Clustering process

Just as with compaction, you can configure the clustering process by
selecting from various strategies. Let’s examine these options.

Schedule Clustering
Triggering clustering is based on the number of commit or
deltacommit actions accumulated since the last clustering process. As
an example, you could configure these settings for your writer job for inline
mode:

hoodie.clustering.inline=true 
hoodie.clustering.inline.max.commits=4



Once the settings are triggered, Hudi uses its clustering plan strategy to
identify candidate file slices for clustering. By default, Hudi provides a
size-based clustering plan strategy, which creates clustering groups based
on the maximum size allowed per group and considers the following key
thresholds:

# Target maximum file size for clustering output 
hoodie.clustering.plan.strategy.target.file.max.bytes=1073741824  
# 1GB 
 
# Small file size limit for clustering   
hoodie.clustering.plan.strategy.small.file.limit=314572800  # 
300MB  
 
# Maximum number of groups in clustering plan 
hoodie.clustering.plan.strategy.max.num.groups=30 
 
# Maximum bytes per group 
hoodie.clustering.plan.strategy.max.bytes.per.group=2147483648  # 
2GB 
# Columns to sort 
hoodie.clustering.plan.strategy.sort.columns=a,b

Based on this example configuration, the clustering plan would be as
follows:

1. Within each partition, identify all file slices smaller than 300 MB.

2. Group these small file slices together, ensuring that each group’s
total size does not exceed 2 GB, and create no more than 30 such
groups in total.

3. Finally, for each group, sort the records by columns a and b before
rewriting them into new, larger file slices, each targeting a
maximum size of 1 GB.

The plan can also be configured by setting
hoodie.clustering.plan.partition.filter.mode to filter
which partitions to include using different partition filtering modes:

NONE, to include all partitions that have clustering candidates



RECENT_DAYS, to include partitions from a specific date range

SELECTED_PARTITIONS, to include only specified partition
paths

DAY_ROLLING, to include partitions based on a rolling daily
schedule

Execute Clustering
If you configured the clustering for inline mode, the execution will start
immediately after the plan being generated by the scheduler. The same
writer job, like Spark or Flink, will continue to run the clustering. If you
configured it for async execution mode, the writer job will submit another
job for the execution to run asynchronously. If you configured it for
standalone mode, you’ll need to set up another job, leveraging Hudi’s utility
application, like HoodieClusteringJob for Spark or
HoodieFlinkClusteringJob for Flink, to execute the clustering
plan. For more examples, please refer to the documentation page.

Layout Optimization Strategies
While Hudi’s default strategy uses linear (lexicographical) sorting of
records based on specified columns, it may not be optimal for all use cases.
Let’s explore why and when you might want to use alternative layout
strategies.

Linear sorting
The linear strategy is often highly effective for datasets in which record
proximity relies on just one column. For instance, consider a table
containing transaction records with a timestamp column. Analysts often run
queries to fetch all records between transaction time A and transaction time
B. Given that the records are considered proximally close as long as the
transaction timestamps are close, linear sorting by timestamp is a perfect
strategy to preserve locality.
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However, the linear strategy may not perform well with datasets that require
two or more columns to determine record proximity. For example, consider
a house inventory dataset with columns for latitude and longitude.
Lexicographical sorting of latitude followed by longitude would group
geographically distant house records together simply based on the
proximity of latitude. In such cases, sorting algorithms that are capable of
handling N-dimensional records are needed. This is where Z-order and
Hilbert optimization strategies can be applied.

Space-filling curves
The mathematical term space-filling curve describes a curve that traverses a
space, intersecting with all possible points in that space and thereby filling
it entirely. Once the curve is straightened, all the multidimensional points
are mapped to a one-dimensional space and are assigned a single-value
coordinate. Among the various curve-drawing methods, Z-order and
Hilbert, as shown in Figure 6-8, are two approaches that can effectively
preserve spatial locality through this mapping, as the majority of nearby
points on the curve are also close to each other in the original space.



Figure 6-8. Z-order and Hilbert curves in a two-dimensional plane

When we treat records as multidimensional points, drawing a Z-order or
Hilbert curve essentially defines the way to sort them. Given that spatial
locality is well preserved, actual “nearby” records are more likely to be
stored in the same files. This fulfills the proximity condition and could
significantly enhance read efficiency by skipping more files to scan.

By setting hoodie.layout.optimize.strategy to ZORDER or
HILBERT, you can instruct the clustering process to sort the records based
on these advanced sorting algorithms. This ensures that records that are
close in multidimensional space (e.g., nearby geographical coordinates) are
also physically co-located on disk, enabling highly efficient range and
radius queries.



Clustering Versus Compaction
While both clustering and compaction rewrite data to optimize table
performance, they serve different purposes and operate differently. Here are
the key distinctions.

First, clustering works with both COW and MOR tables, while compaction
only applies to MOR tables. This makes clustering a more versatile
optimization tool across different table types.

Second, they differ in how they handle record organization. Compaction
operates within a file group, merging log files with their base file to create a
new file slice that represents a newer version of records in that file group. In
contrast, clustering reorganizes records across file groups, creating entirely
new ones with both optimized sizes and sorted records.

Cleaning
Hudi achieves snapshot isolation between writers and readers through
MVCC, which maintains multiple versions of data files. While these
versioned files enable powerful features like time travel and incremental
queries, they can significantly impact storage costs over time. As new data
arrives, Hudi tables continuously create file slices to represent newer
versions, inevitably consuming more storage space. This is where the
cleaning service comes in. It reclaims storage space by removing older,
unnecessary versions of data files, effectively keeping storage costs in
check (Figure 6-9).



Figure 6-9. Cleaning process

The cleaning service is most relevant for tables with updates or deletes,
where each modification creates a new version of the affected data. By
leveraging this service, we can control the retention period for historical
versions while optimizing storage costs, effectively balancing between



storage efficiency and the time window available for time travel queries and
incremental processing.

Append-only tables do not need the cleaning table service, as they never
generate multiple versions of the same data. Running cleaning on these
tables would be a no-op because there are no outdated versions to clean. It’s
also worth noting that the cleaning table service serves a distinct purpose
from time-to-live (TTL) operations. While TTL might delete entire date
partitions older than a threshold, the cleaning service specifically manages
and removes outdated versions of modified records.

Schedule Cleaning
When scheduling cleaning operations, Hudi uses a trigger-based approach
to determine when maintenance is needed. Let’s explore how we can
configure and control this scheduling process to match our table
maintenance requirements.

The configurations for inline cleaning are:

hoodie.clean.automatic=true 
hoodie.clean.async.enabled=false

This is the default mode for using Spark as the writer. For Flink, the default
is the async execution mode.

The cleaning service is triggered by setting the
CleaningTriggerStrategy, which currently supports triggering
based on commits. We can configure how frequently cleaning should be
scheduled by specifying the number of commits between cleaning
operations. For example, if we set this to 10 commits, Hudi will evaluate
whether cleaning is needed after every 10th commit:

# Configure cleaning trigger interval 
hoodie.clean.trigger.strategy=NUM_COMMITS 
hoodie.clean.trigger.commits=10



Once triggered, the cleaning planner scans relevant partitions to identify file
slices that meet the cleaning criteria. These criteria are defined by our
chosen Hoodie Clea ning Policy.

We can choose from three cleaning policies based on our specific needs:

Commit-based retention

For example:

# Keep last 24 commits 

hoodie.cleaner.policy=KEEP_LATEST_COMMITS 

hoodie.cleaner.commits.retained=24

This is ideal when we need to ensure that our long-running queries have
access to historical data. For instance, if we ingest data every 30
minutes and our longest query takes 12 hours, we should retain at least
24 commits to maintain a safe window for query execution.

Version-based retention

For example:

# Keep last 3 versions of each file 

hoodie.cleaner.policy=KEEP_LATEST_FILE_VERSIONS 

hoodie.cleaner.fileversions.retained=3

This works well when we want to maintain a fixed number of versions
regardless of time, such as keeping only the most recent version for
storage optimization.

Time-based retention

For example:



# Keep versions from last 72 hours 

hoodie.cleaner.policy=KEEP_LATEST_BY_HOURS 

hoodie.cleaner.hours.retained=72

This provides a straightforward way to retain data based on age, making
it easy to implement time-based retention policies.

Execute Cleaning
Once we have our cleaning schedule and policies in place, the execution
phase carries out the actual cleaning operations, in this case, deleting the
old file slices.

If you configured the cleaning for inline mode, the execution will start
immediately after the plan being generated by the scheduler. The same
writer job, like Spark or Flink, will continue to run the cleaning. If you
configured it for async execution mode, the writer job will submit another
job for the execution to run asynchronously. If you configured it for
standalone mode, you’ll need to set up another job, leveraging Hudi’s utility
application HoodieCleaner for Spark (there is no utility for Flink at the
time of writing), to execute the cleaning plan. For more examples, please
refer to the documentation page.

By properly configuring both scheduling and execution parameters, we can
maintain optimal storage efficiency while ensuring that our data remains
accessible for all necessary operations.

Indexing
As discussed in Chapter 5, Hudi offers a variety of indexing options. The
metadata table, in particular, serves as a multimodal index and is the core
indexing subsystem within a Hudi table, improving both read and write
performance.
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However, for indexes such as the record index and secondary index, the
metadata table stores entries that grow with the number of records in the
table. Consequently, enabling these indexes on a large, existing table
requires scanning a large number of file slices to build the index from
scratch—a process that can be time-consuming. In addition, it will not be
acceptable to fail writers or queries for the duration of the index building
process; rather, readers and writers should continue to operate normally and
should gracefully degrade in performance. Furthermore, when indexing
completes, the indexing process should ensure that the index is consistent
with the latest writes on the table. These challenges are the primary
motivation for the indexing table service.

The indexing operation creates an indexing action in the data table’s
timeline to record the operation. In the same transaction, it also performs a
deltacommit action on the metadata table, writing index data to the
partition for the new index (Figure 6-10). In Chapter 5, we used the
CREATE INDEX SQL command to build multiple index types in the
metadata table. Using this command essentially runs the indexing table
service in the inline mode. This approach requires stopping all writers to the
table while the indexing is in progress, which can cause service
interruptions and a negative business impact, as we noted earlier.





Figure 6-10. Indexing process

Thus, the primary use case for the indexing table service is to run it in the
standalone mode, allowing incoming data to be written to the table while
having an indexer running separately in parallel. Because ongoing writers
must continue to update the partitions in the metadata table for the enabled
indexes while the indexer builds the indexes for historical data, this
concurrent write process must be coordinated. Therefore, running the
standalone indexing service is a multiwriter scenario requiring
configuration of a lock provider.

To facilitate running the standalone indexing service, Hudi provides a utility
application, HoodieIndexer, that supports both scheduling and
execution in Spark. A few of its important arguments include:

--mode <schedule or execute> 
--index-types <index types to be built> 
--props </path/to/indexer/properties/file>

Set --mode to schedule or execute to indicate whether to
schedule indexing by making a plan, or to execute indexing based on the
plan. Use --index-types to specify the indexes to build in the metadata
table, such as RECORD_INDEX. Multiple index types can be provided as a
comma-delimited list. The --props argument points to a .properties file
containing the Hudi configurations for the HoodieIndexer. An example
of this .properties file is as follows:

hoodie.metadata.index.async=true  
hoodie.metadata.index.record.index.enable=true  
 
hoodie.write.concurrency.mode=optimistic_concurrency_control  
hoodie.write.lock.provider=\ 
org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvide
r 
hoodie.write.lock.zookeeper.url=<zk_url> 
hoodie.write.lock.zookeeper.port=<zk_port> 
hoodie.write.lock.zookeeper.lock_key=<zk_key> 
hoodie.write.lock.zookeeper.base_path=<zk_base_path>



This configuration indicates using standalone mode for indexing.
The corresponding flag for the index type being built must also be set to
true.
This property and the entries below it configure the setup for the
multiwriter scenario.

When running the indexer, both the indexer and the writer jobs should use
the same lock provider and should enable the same indexes to be built. For
more examples, please refer to the documentation page.

Summary
In this chapter, we explored the importance of maintaining and optimizing
Hudi tables to keep our data lakehouse running efficiently. Just like we
should keep our home organized, we should regularly clean and reorganize
our tables to ensure that they remain accessible and performant. We
introduced Hudi’s table services—our essential toolkit for this task—which
include compaction, clustering, cleaning, and indexing.

We examined the different deployment modes available for these services—
inline, async execution, and standalone—and discussed how we can balance
simplicity with flexibility to meet our operational needs. Each of these table
services serves a specific purpose:

Compaction lets us improve read performance for MOR tables by
merging log files and base files into optimized formats.

Clustering enables us to reorganize and sort records to enhance
query performance and reduce storage costs.

Cleaning helps us reclaim storage by removing unnecessary file
versions while retaining the historical data we need.

Indexing builds up the index data in the metadata table.

https://oreil.ly/SEkFM


Throughout the chapter, we reviewed strategies and configurations for
scheduling and executing these services, empowering us to tailor them to
our specific workloads and infrastructure. By implementing these
maintenance operations, we can optimize our data lakehouse for both
current and future demands, keeping it scalable, cost-efficient, and high
performing.



Chapter 7. Concurrency Control
in Hudi

In the world of databases and data lakehouses, concurrency control is a
critical concept that ensures data integrity and consistency in the face of
multiple concurrent operations. It defines how different processes, whether
they are reading or writing data, coordinate access to the shared data to
prevent conflicts and maintain data integrity. Concurrency control is crucial
because, without it, uncoordinated access to data can lead to various
anomalies such as lost updates, dirty reads, and inconsistent data.

Imagine an ecommerce platform where two customers simultaneously
attempt to purchase the last available unit of a high-demand product. If the
system lacks proper concurrency control, both transactions might proceed
as if the item is available, leading to one customer being charged for a
product that is out of stock. This scenario can result in customer complaints,
refund processing costs, and damage to brand reputation. By implementing
concurrency control mechanisms, the system ensures that only one
transaction succeeds, preventing overselling and maintaining accurate
inventory records.

In Chapter 3, we provided an overview of Apache Hudi’s write process; in
this chapter, we’ll dig deeper into how Hudi handles concurrent operations
to protect against these kinds of problems.

Why Concurrency Control Is Harder in Data
Lakehouses
Many database systems implement concurrency control mechanisms to
handle multiple writers and readers. For instance, PostgreSQL uses MVCC



to allow readers to access a consistent snapshot of the data while writers
modify it using pessimistic row-level locking techniques.

Online transaction processing (OLTP) databases operate on individual
records with transactional storage engines that provide millisecond-level
latencies for reads and writes. In contrast, data lakehouses are designed for
massive-scale storage, with long-running write transactions that span
minutes (e.g., near-real-time ingestion) to several hours (e.g., a large-scale
machine learning training pipeline) and large columnar (OLAP) scans. This
makes it difficult to simply apply the same OLTP concurrency control
techniques like fine-grained locking or versioning to data lakehouses,
without introducing significant performance overhead or scaling
bottlenecks.

Additionally, lakehouses often rely on cloud object stores (e.g., Amazon S3,
GCS) for their scalable storage. While these stores have evolved to provide
strong consistency guarantees for object-level operations (like read-after-
write), they lack the native, multioperation transactional capabilities of
traditional databases, which complicates the atomicity of complex commits.
As a result, concurrency control in data lakehouses requires innovative
approaches that balance consistency, scalability, and performance in a
distributed environment.

Given the distributed nature of data lakehouses and the potentially limited
built-in transactional guarantees in underlying storage systems, supporting
multiple writers is essential for scalability and efficiency. While a single-
writer approach may suffice for simple use cases, it quickly becomes a
bottleneck in modern data lakehouses, where vast amounts of data flow in
from multiple sources, and various operations—such as inserts, updates,
deletes, and clustering—must run concurrently and safely. A sequential
execution model imposed by a single writer hinders performance, limits
scalability, and introduces a single point of failure, increasing operational
risk.

Beyond speed, supporting multiple writers allows organizations to separate
distinct workflows into independent pipelines. For example, data ingestion,



backfilling, and clustering can be scheduled and executed in parallel,
optimizing resource utilization. Clustering operations, such as sorting or
encrypting data, can run during off-peak hours without slowing down
ingestion pipelines, while regulatory compliance tasks—like GDPR-
mandated deletions—can proceed without disrupting real-time data flows.
Hudi addresses these challenges by enabling concurrent writes while
maintaining consistency, ensuring that lakehouse workloads scale
efficiently and remain adaptable to increasing data volume and complexity.

While managing concurrent writers is a primary challenge, a robust system
must also guarantee that read operations are isolated from these writes to
prevent exposing inconsistent or partial data to users and downstream
applications. It is essential to ensure that readers are not affected by inflight
writes, as this could result in inconsistent or incomplete data being exposed
to downstream applications. Hudi addresses this challenge by employing
snapshot isolation, which allows readers to view a consistent snapshot of
the dataset, irrespective of ongoing write operations. By providing such
guarantees, Hudi ensures that both writers and readers always operate on
stable and reliable data without incurring the overhead of traditional locking
mechanisms, addressing the problems introduced earlier.

Concurrency Control Techniques
Concurrency control in modern systems is implemented through a variety
of techniques. OCC is one such method, where the system assumes that
conflicts are rare and allows multiple processes to proceed concurrently. At
the commit stage, the system checks for conflicts and resolves them as
needed. While this minimizes locking overhead, it may require retries if
conflicts are detected. In a data lakehouse, these retries can be prohibitively
expensive, because writes worth several hours could be lost and would need
to be reissued.

Another widely used approach is MVCC, which allows readers and writers
to work on different versions of the data. Readers operate on a snapshot of
the data corresponding to their transaction’s start time, while writers



generate new versions of the data. This method ensures isolation and avoids
blocking readers. Hudi has also designed a more fitting approach for data
lakehouse workloads, non-blocking concurrency control (NBCC).
Processes write delta changes, and conflicts are resolved later in a
deterministic order based on either commit order or an ordering field within
the record. This is particularly effective for streaming workloads, where
minimizing latency and zero downtime are critical.

Hudi employs these three techniques carefully to create a robust and
performant concurrency model tailored to the unique requirements of data
lakehouses. It employs OCC to manage conflicts between concurrent
writers, ensuring consistent updates that are serialized in a consistent order.
MVCC provides snapshot isolation across writers, readers, and table
services, enabling table services like compaction and cleaning to run
asynchronously without blocking write operations. Additionally, NBCC is a
specialized approach for high-throughput lakehouse tables that allows
multiple writers and concurrent table services to operate on the table
without failing each other, eliminating gross compute resource wastage
incurred by OCC. By combining these mechanisms, Hudi allows multiple
processes to operate concurrently while maintaining consistency, isolation,
and performance.

This chapter will provide a detailed explanation of how Hudi manages
concurrency in distributed data lakehouses. By exploring its concurrency
control mechanisms, you’ll learn how Hudi enables coordinated,
simultaneous operations—such as data ingestion, updates, and deletions—
while preserving data consistency. This will help you design and operate
scalable, high-performance data platforms that efficiently handle multiple
concurrent workloads without compromising reliability.

Although Hudi’s concurrency control mechanisms prevent data corruption
from concurrent writes, they do not automatically resolve all logical
conflicts. For instance, with OCC, duplicate records may be inserted if two
writers process the same source data. Hudi guarantees that the underlying
table structure always remains consistent, but users are still responsible for



ensuring that their data pipelines are idempotent and partitioned to avoid
logical inconsistencies.

Multiwriter Scenarios
In modern lakehouse environments, the ability to support multiple writers is
not just a feature but a necessity. The demand for high throughput,
operational flexibility, and efficient resource utilization makes a single-
writer system insufficient for most real-world scenarios. Hudi addresses this
need by allowing multiple writers to operate concurrently while ensuring
that data consistency and integrity are maintained.

Why Multiwriters Are Necessary
A multiwriter system becomes indispensable for several reasons:

Handling resource limitations

A single writer can quickly become a bottleneck, especially when
dealing with large-scale data ingestion or processing workflows.
Multiwriter capabilities distribute the workload across multiple
processes, improving throughput and scalability.

Supporting independent pipelines

Different types of operations—such as ingestion, ETL, backfilling, and
clustering—have varying resource requirements and priorities. Running
these operations in separate pipelines not only improves efficiency but
also reduces operational overhead.

Minimizing operational delays

Critical write operations must often proceed without being slowed down
by other data management tasks. Multiwriter systems ensure that best-
effort table services, such as cleaning or compaction, do not interfere
with time-sensitive data pipelines.



Cost efficiency

By separating high-priority and resource-intensive tasks from lower-
priority ones, organizations can allocate resources more effectively. For
example, backfilling operations can use low-cost resources during off-
peak hours, while writes continue uninterrupted.

Scalability

Multiple writers enable horizontal scaling of writes, allowing
organizations to handle increasing data volumes without compromising
performance.

Multiwriter Scenarios for OCC
Typical data lakehouse multiwriter support employs OCC and can handle
scenarios where writers operate on independent portions of the data,
minimizing the risk of conflicts. Following are some common scenarios
where multiwriter support based on OCC works smoothly.

Backfilling data
Imagine a financial services company migrating years of transaction records
from an old system into a Hudi table. A dedicated backfill writer can handle
this process in parallel with the primary writer pipeline, ensuring that
historical data is added without slowing down or interfering with the
writing of new transactions.

Deleting older data
Organizations handling sensitive customer data must comply with
regulations like GDPR, which require the deletion of certain records after a
set period. For example, an insurance company may need to purge certain
records older than five years. A separate writer can handle these deletions
without interrupting real-time order ingestion, ensuring compliance without
impacting application performance.



Post-processing data using clustering services
Large-scale analytics platforms often require periodic reorganization of data
for efficiency. Consider a video streaming service storing user engagement
logs in a data lakehouse. To speed up query performance, the system may
cluster data by user ID or time intervals. Instead of burdening the primary
ingestion process, a separate writer can run during off-peak hours to
optimize file sizes and sort data, improving read performance for analytics
workloads.

Scaling ingestion/ETL
In data-intensive environments, relying on a single data pipeline can
become a bottleneck for high-throughput tables. For instance, a
cybersecurity platform processing logs from thousands of servers might
need to ingest terabytes of data per hour. By assigning multiple writers to
different partitions of an Apache Kafka topic, the system can efficiently
distribute the ingestion load, thereby preventing lag and improving overall
throughput.

Multiwriter Scenarios for NBCC and MVCC
Scenarios involving overlapping writes to the same file groups can lead to
conflicts, resulting in resource wastage or aborted operations. In particular,
a multiwriter with OCC is not recommended in the following cases. Instead,
a multiwriter with an NBCC or MVCC approach is required for smooth
operations.

Scenarios with overlapping data modifications
Suppose two data engineers are responsible for updating customer records
in a retail database, each running a job that modifies user profiles based on
different sources. If both jobs attempt to update the same set of user records
simultaneously, one write may be aborted, leading to wasted compute
resources and inconsistencies in customer data. In such cases, using NBCC
to order or merge the conflicting writes might be more effective. For
example, Hudi can either pick the latest committed record (commit time



ordering) or the one with the higher source timestamp (event time
ordering), without failing either writer. This allows both writers to complete
their writes, whereas an OCC-based approach would have failed one writer
even if just one record intersected across the writes.

High-contention workloads
In some cases, writers and table services constantly contend on the same
file groups or records. For example, TikTok streams 100 GB per minute
into Hudi tables and cannot afford to have either process fail and retry
constantly using OCC. Using the MVCC-based approach here helps by
allowing both compaction and the writer to work off a single shared version
of the file group.

The Simple Default: Single Writer with Table Services
While multiwriter support is essential for many scenarios, the simplest and
most common use case is a single writer with no concurrent writers. Out of
the box, Hudi operates under this model, eliminating the need for external
lock providers to get started and simplifying the architecture. For simpler
workflows, a single-writer system combined with table services can be
highly effective and sufficient.

Single writer with inline table services
In the single-writer model, table services such as cleaning, compaction, and
clustering can be run inline after every write. This ensures that the table is
optimized and managed without the need for additional concurrency
control. Inline table services are idempotent, meaning they can be retried in
case of failures, and they are automatically persisted to the timeline.

Single writer with async execution table services
Alternatively, table services can be run asynchronously in the background,
allowing the writer to continue ingesting data without being blocked. Table
services in async execution mode are particularly useful for long-running
operations, such as compaction, which can take significant time to



complete. Hudi leverages MVCC to ensure that such table services can run
concurrently with the writer without conflicts.

Table 7-1 highlights the guarantees provided by different concurrent control
mechanisms for different types of writer workloads and concurrent readers.

Table 7-1. Guarantees in multiwriter scenarios

Scenario
UPSERT

guarantee
INSERT

guarantee
BULK_INSERT

guarantee

INCRE
UERY

guar

Single writer No duplicates No duplicates No duplicates No ou
order

Multiwriter
(OCC)

No duplicates May have
duplicates
(without
custom
conflict
resolution)

May have
duplicates

No ou
order

Multiwriter
(NBCC)

No duplicates May have
duplicates
(without
custom
conflict
resolution)

May have
duplicates

No ou
order



How Hudi Handles Concurrency Control
A good multiwriter system should possess several key features to ensure
efficient and reliable concurrent operations. It should allow multiple writers
to write and commit data concurrently if there are no conflicting writes to
the same underlying data. It should also have mechanisms to minimize,
detect, and resolve conflicts between writers that modify the same data. To
handle various use cases and workflows, it should provide a pluggable
interface for users to define their own conflict resolution strategies. To
simplify architecture and enhance scalability, a good multiwriter system
should minimize the need for additional external components and reduce
the reliance on long-held locks. Additionally, it should allow table services
to run concurrently with writers without blocking them, ensuring smooth
and efficient data management.

Hudi’s concurrency control design inherently supports all of these features.

The Foundations of Hudi’s Concurrency Control
At its core, Hudi’s concurrency control is built around the concept of
snapshot isolation, which ensures that all processes—whether they are
writers, table services, or readers—operate on a consistent snapshot of the
table. This is achieved through a combination of OCC, MVCC, and NBCC.
These mechanisms work in tandem to provide a robust framework for
handling concurrent operations. For example, even when applying MVCC
and NBCC, there is a shared understanding of the snapshot the processes
are concurrently operating on, using short-lived distributed locks.

Snapshot isolation
Snapshot isolation is a critical feature that allows Hudi to maintain
consistency across multiple processes. When a writer commits changes to
the table, those changes are not immediately visible to readers. Instead,
readers continue to access a consistent snapshot of the data as it existed
before the write operation began. This ensures that readers are not exposed
to partially written or inconsistent data, even while writes are in progress.



OCC
Hudi employs OCC to manage conflicts between writers. Under OCC,
writers proceed with their operations optimistically, assuming that conflicts
are rare. If two writers attempt to modify the same file group
simultaneously, Hudi detects the conflict and resolves it by aborting one of
the writes.

However, OCC is not without its challenges. In scenarios where conflicts
are frequent, the cost of aborting and retrying writes can become
significant. To mitigate this, Hudi introduces early conflict detection
(discussed later in the chapter), which identifies potential conflicts during
the data writing phase and aborts conflicting writes early in the lifecycle.
This reduces the wastage of compute resources and improves overall
system efficiency.

MVCC
MVCC is a foundational concept Hudi uses to provide NBCC between
different types of operations. Think of it as a mechanism that keeps readers,
writers, and table services from interfering with one another. MVCC allows
multiple versions of the data to coexist, enabling readers to access a
consistent snapshot of the table while writers and table services modify the
data in the background. For example, a compaction job can safely rewrite
data files in the background. While it generates new file versions, a long-
running query that started before the compaction continues to read the
older, consistent versions of those files. This prevents readers from seeing
partial results and writers from being blocked by maintenance operations.

NBCC
Hudi’s NBCC is a sophisticated mechanism designed to handle
simultaneous writes to a single table without the need to abort any of those
writes due to conflicts. This approach significantly improves ingestion
throughput and reduces write failures, especially in high-concurrency
streaming scenarios. It is a key feature that allows multiple writers to



operate on the same table, and even the same file group, with conflicts
being resolved automatically by the query reader and the compactor.

At its core, NBCC leverages a novel file layout strategy based on commit
completion time, using TrueTime semantics, introduced in “About
TrueTime Semantics”. TrueTime ensures global timestamp monotonicity
across all writers. When multiple writers attempt to write to the same file
group, instead of blocking or failing one of the writers, NBCC allows both
to proceed. It achieves this by creating separate file slices for each
concurrent write, with the conflicts resolved during read time or by the
asynchronous compaction process. This is a departure from the traditional
OCC model, where conflicting writes to the same file group would result in
one of the writers failing and needing to retry.

The introduction of the Log-Structured Merge (LSM) Timeline in Hudi 1.0
is a foundational element for NBCC. The LSM Timeline provides a scalable
and efficient way to manage table metadata, which is crucial for tracking
the various concurrent writes and their states. It records both a requested
time and a completion time for each action, which allows Hudi to maintain
a consistent view of the table even with multiple writers operating in
parallel. This detailed recordkeeping in the timeline enables the system to
correctly reconstruct the state of the data for readers, ensuring data
consistency and integrity without the performance bottlenecks associated
with traditional locking.

Figure 7-1 shows a comparison of OCC versus NBCC when multiple
writers attempt to write to the same file groups. OCC fails the second
writer, but NBCC allows both writers to proceed.





Figure 7-1. Comparison between OCC and NBCC

The Three-Step Commit Process
Hudi’s concurrency control is implemented through a three-step commit
process (refer to Figure 7-2), which ensures that writes are atomic and
consistent. This process, designed to minimize contention for locks and
allow multiple writers to operate concurrently, comprises the following
phases:

Phase 1: Request

In the request phase, the writer records its intent to write data in the
timeline. This step generates the requested time for the transaction,
which acts purely as a transaction ID for OCC and is used to sequence
file slices for NBCC.

Phase 2: Inflight

In the inflight phase, the writer optionally records the plan of what
changes it intends to make. This includes the file groups that will be
written or modified. The inflight phase does not require locks, allowing
multiple writers to proceed concurrently, writing new base files or log
files. This phase can proceed in parallel with other writers, as the
changes remain invisible to readers until the final commit.

Phase 3: Commit

In the commit phase, the writer updates the timeline to reflect the
changes it has made. This is the atomic commit point, and it again
requires a short-lived distributed lock. The lock is acquired briefly to
generate a completion time to order the write, and also to ensure that no
other writer can commit conflicting changes at the same time. Once the
commit is complete, the lock is released, and the changes become
visible to readers.



This design achieves a careful balance between concurrency and
consistency, allowing maximum parallelism while maintaining strong
correctness guarantees. The system maintains consistency by ensuring that
readers continue to see the last successfully committed version of the data.

Figure 7-2. Three-step commit process with locking

Figure 7-2 depicts a timeline showing two concurrent writers. Both proceed
through the requested and inflight phases in parallel. The lock is acquired



during the requested phase to generate a timestamp and during the commit
phase to perform the commit. Writer 1 acquires the lock first, commits, and
releases the lock, creating a new table snapshot. Writer 2 then acquires the
lock and attempts its commit, which will only succeed if there are no
conflicts with Writer 1’s changes.

NOTE
While multiple writers might initiate their operations at nearly the same time, Hudi’s
timeline provides a strict, sequential ordering of actions. The underlying lock provider
ensures that even near-simultaneous commit attempts are serialized, with one writer
succeeding first and establishing the basis for any subsequent conflict checks.

The success of this protocol relies on careful management of file states and
metadata. Each phase is recorded in the timeline, creating a clear audit trail
of operations and enabling recovery in case of failures. This careful
orchestration of concurrent operations, combined with pluggable
components for locking and conflict resolution, makes Hudi a powerful
platform for building scalable lakehouse solutions. The system’s design
reflects a deep understanding of the challenges inherent in distributed data
processing, providing practical solutions that balance performance,
consistency, and operational complexity.

Conflict Detection and Resolution
In concurrent systems, conflicts are inevitable when multiple writers
attempt to modify the same data simultaneously. Hudi’s approach to conflict
handling is both pragmatic and efficient. The system allows multiple writers
to proceed concurrently, maximizing throughput for nonconflicting
operations.

When conflicts do occur and a winning write or table service operation
needs to be picked, Hudi employs a default strategy that favors simplicity
and consistency. Hudi uses a
SimpleConcurrentFileWritesConflictResolutionStrate



gy, which allows multiple writers to commit their changes as long as they
are not modifying the same file group. If two writers attempt to modify the
same file group, the later write is aborted. This approach caters to the most
common concurrent workload patterns on the data lakehouse but may be
insufficient. Therefore, Hudi provides a pluggable interface for conflict
resolution, allowing organizations to implement custom strategies that align
with their specific requirements. For example, one can implement a strategy
that actually reads out the record keys committed by conflicting writes and
chooses to abort the write if duplicate keys are detected. This would come
at the cost of additional I/O for every write, which lakehouse users do not
typically prefer, but Hudi provides this powerful flexibility.

To illustrate this further, consider a scenario, as shown in Figure 7-3, where
two writers attempt to modify records within the same file group. The first
writer begins its commit process and acquires the lock. When the second
writer attempts to commit, Hudi’s conflict detection mechanism identifies
the overlap in file groups. In the default configuration, the second writer’s
operation will be aborted, requiring a retry. However, a custom conflict
resolution strategy might implement more sophisticated handling, such as
merging the changes or applying them sequentially based on business rules.



Figure 7-3. Hudi conflict resolution protocol



Locking Mechanisms
To coordinate writes in a distributed multiwriter environment, Hudi
supports several distributed locking mechanisms, each with its own
advantages and trade-offs. Some of the most popular locking mechanisms
supported are listed here, and their features are compared in Table 7-2. The
choice of locking mechanism depends on the specific requirements of the
use case and the infrastructure available. Details on configuring each
provider are covered in “Configuring the Locking Mechanism”.

Zookeeper-based locking

This mechanism uses Apache Zookeeper to coordinate locks between
multiple writers. Zookeeper is a highly reliable distributed coordination
service, providing strong consistency guarantees, but it can introduce
additional operational overhead, especially in large-scale deployments.
Organizations already using Zookeeper in their infrastructure may find
this a natural choice, as it integrates seamlessly with existing
operational practices.

For deployments on cloud providers where there is no custom locking
mechanism (e.g., Google Cloud or Microsoft Azure), the most common
and robust approach is to run a Zookeeper cluster on virtual machines
(e.g., Google Compute Engine or Azure VMs). This provides the same
strong consistency guarantees as an on-premises deployment and is a
well-supported pattern for Hudi on any cloud.

Storage-based locking

This mechanism leverages conditional writes available in modern cloud
storage systems to implement distributed locking through a leader
election algorithm. Amazon S3 recently introduced conditional writes,
and GCS and Azure storage already support them. In this approach,
each process attempts an atomic conditional write to a file calculated
using the table base path. The first process to succeed is elected as the
leader and takes charge of exclusive operations. This method provides a



straightforward, reliable locking mechanism without requiring external
services, making it a cost-effective and infrastructure-light choice.

Amazon DynamoDB–based locking

This mechanism uses DynamoDB as a distributed lock provider.
DynamoDB is highly scalable and easy to manage, but it may incur
additional costs, especially in large-scale deployments. For cloud
deployment, this option provides a cloud native solution particularly
well suited to AWS deployments. The pay-per-use pricing model can be
cost-effective, especially for variable workloads.

Custom locking mechanism

For advanced use cases, Hudi’s pluggable lock provider interface allows
for the implementation of custom providers that could leverage cloud
native services like Google’s Zonal Lock or Azure’s Blob Lease API.



Table 7-2. Comparison of various locking mechanisms

Locking
mechanism

External
dependency Scalability Consistency Cost

Zookeeper Requires
dedicated
ZooKeeper
cluster

Highly
scalable with
proper
configuration;
can handle
thousands of
concurrent
operations

Strong
consistency
guarantees
with leader
election and
distributed
consensus

Mode
infras
and
opera
costs 
maint
ZooK
cluste

Storage Reuses the
same
distributed
storage system
(e.g., HDFS,
Amazon S3)
used for table
storage

Scalability
depends on
underlying
storage
system; can
handle large-
scale
concurrent
operations

Consistency
guarantees
depend on
storage system

Varie
on sto
system
typic
effect
existi
infras



Each of these locking mechanisms has its own advantages and trade-offs.
For example, Zookeeper provides robust reliability but may introduce
infrastructure complexity, while DynamoDB offers seamless cloud
integration but may require careful cost management. Regardless of the
mechanism chosen, Hudi’s design ensures that locks are only held for a
short duration during the commit phase, minimizes contention, and allows
for higher concurrency so that it does not become a bottleneck.

The choice of locking mechanism should be made based on the specific
requirements of the use case, taking into consideration factors such as
external dependencies, scalability, consistency guarantees, and cost.
Organizations should evaluate the trade-offs and select the mechanism that
best aligns with their operational needs and infrastructure.

Locking
mechanism

External
dependency Scalability Consistency Cost

DynamoDB Requires AWS
account and
DynamoDB
table

Excellent
scalability
with automatic
scaling;
handles
millions of
operations

Strong
consistency
with ACID
transactions at
the row level

Pay-p
pricin
scale 
usage

In-memory
(single writer)

None Limited to
single JVM

Strong
consistency
within process

No ad
cost



Challenges in Multiwriter Systems
One of the fundamental challenges in multiwriter systems is efficiently
dividing data into independent portions that can be processed concurrently.
Hudi addresses this through its file group abstraction, which provides a
natural unit of parallelization. Writers can operate on different file groups
simultaneously, enabling horizontal scaling of write operations. The system
must also handle resource allocation effectively. When multiple writers
contend for resources such as memory, CPU, and network bandwidth, the
system needs to maintain fairness while preventing deadlocks or starvation.
Hudi’s design minimizes resource contention by limiting the scope and
duration of locks, and by providing mechanisms for early conflict detection.

Early conflict detection is particularly important for resource efficiency. In
earlier versions of Hudi, writers would proceed with their entire operation
before detecting conflicts at commit time, potentially wasting significant
computational resources. The introduction of early conflict detection allows
writers to abort quickly when conflicts are detected, releasing resources that
would otherwise be consumed by doomed-to-fail, wasteful operations.

Using Multiwriter Support in Hudi
Enabling multiwriter support in Hudi requires careful configuration to
ensure that multiple writers can operate concurrently without conflicts. This
section provides a step-by-step guide to enabling multiwriter support,
including the necessary configurations, locking mechanisms, and code
examples for common use cases.

Enabling Multiwriter Support
To enable multiwriter support in Hudi, you need to configure the
appropriate settings in your Hudi properties file or job configuration. The
key configuration parameters are:

Hoodie.write.concurrency.mode



Set this to optimistic_concurrency_control to enable
multiwriter support.

Hoodie.write.lock.provider

Specify the locking mechanism to be used (e.g.,
ZookeeperBasedLockProvider,
HiveMetastoreBasedLockProvider, or
DynamoDBBasedLockProvider).

Hoodie.cleaner.policy.failed.writes

Set this to EAGER to ensure that failed writes are cleaned up promptly,
preventing them from blocking other writers.

Lock provider–specific settings

Specify the required settings for the chosen lock provider. This is
explained in “Storage-based locking”.

Here is an example configuration for enabling multiwriter support with
Zookeeper-based locking:

# Enable multiwriter support 
hoodie.write.concurrency.mode=optimistic_concurrency_control 
 
# Use Zookeeper-based locking 
hoodie.write.lock.provider=\ 
org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvide
r 
hoodie.write.lock.zookeeper.url=<zookeeper_url> 
hoodie.write.lock.zookeeper.port=<zookeeper_port> 
hoodie.write.lock.zookeeper.lock_key=<lock_key> 
 
# Clean up failed writes eagerly 
hoodie.clean.failed.writes.policy=EAGER

This configuration specifies that Hudi will use OCC as the concurrency
mode and Zookeeper as the locking mechanism. Similar configurations can
be applied for other types of locking.



Configuring the Locking Mechanism
The choice of locking mechanism depends on your specific use case and
infrastructure. The following sections provide a brief overview of the
available options.

Zookeeper-based locking
Zookeeper-based locking is a reliable option for distributed environments. It
provides strong consistency guarantees but requires additional operational
overhead to manage the Zookeeper cluster:

hoodie.write.lock.provider=\ 
org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvide
r 
hoodie.write.lock.zookeeper.url=<zookeeper_url> 
hoodie.write.lock.zookeeper.port=<zookeeper_port> 
hoodie.write.lock.zookeeper.lock_key=<lock_key>

Hive Metastore-based locking
Hive Metastore–based locking is a lightweight option for environments
already using Hive Metastore. It is suitable for low to moderate
concurrency scenarios:

hoodie.write.lock.provider=org.apache.hudi.hive.HiveMetastoreBase
dLockProvider 
hoodie.write.lock.hivemetastore.database=<database_name> 
hoodie.write.lock.hivemetastore.table=<table_name>

DynamoDB-based locking
DynamoDB-based locking is a scalable option for cloud native
deployments, particularly on AWS. It provides strong consistency and is
easy to manage:

hoodie.write.lock.provider=\ 
org.apache.hudi.aws.transaction.lock.DynamoDBBasedLockProvider 
hoodie.write.lock.dynamodb.table=<dynamodb_table_name> 
hoodie.write.lock.dynamodb.region=<aws_region>



Storage-based locking
Storage-based locking is a cloud native solution that leverages conditional
writes in cloud storage platforms (Amazon S3, GCS) to provide distributed
locking without requiring additional infrastructure. This approach uses a
single lock file per table stored directly in the cloud storage, making it ideal
for serverless and cloud native deployments:

hoodie.write.lock.provider=\ 
org.apache.hudi.client.transaction.lock.StorageBasedLockProvider

Multiwriters Using Hudi Streamer
Hudi Streamer is a utility that allows you to ingest data from different
sources, such as DFS or Kafka, into a Hudi table. To enable multiwriter
support in Hudi Streamer, you need to add the appropriate configurations to
the properties file.

Here is an example of how to configure Hudi Streamer for multiwriter
support with Zookeeper-based locking:

# Hudi Streamer properties 
hoodie.write.concurrency.mode=optimistic_concurrency_control 
hoodie.write.lock.provider=\ 
org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvide
r 
hoodie.write.lock.zookeeper.url=<zookeeper_url> 
hoodie.write.lock.zookeeper.port=<zookeeper_port> 
hoodie.write.lock.zookeeper.lock_key=<lock_key> 
hoodie.cleaner.policy.failed.writes=EAGER

You can then trigger the Hudi Streamer job as follows:

spark-submit \ 
  --packages <dependency identifier for a Hudi utilities bundle 
jar> \  
  --class 
org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer \ 
  --master yarn \ 
  --deploy-mode cluster \ 
  --conf 



spark.serializer=org.apache.spark.serializer.KryoSerializer \ 
  --conf spark.sql.hive.convertMetastoreParquet=false \ 
  --table-type COPY_ON_WRITE \ 
  --source-class 
org.apache.hudi.utilities.sources.JsonKafkaSource \ 
  --source-ordering-field ts \ 
  --target-base-path /path/to/hudi_table \ 
  --target-table hudi_table \ 
  --props /path/to/file/with/additional/hudi.properties  

An example identifier can be org.apache.hudi:hudi-
utilities- bundle_ 2.13:1.1.0.

Note that the hudi-utilities-bundle jar works with the latest
supported version of Apache Spark for the corresponding Hudi release
version. Please refer to the release notes for the most up-to-date
information.

Multiwriters Using Spark Data Source Writer
The Hudi Spark module provides a Data Source API that allows you to
write a Spark DataFrame into a Hudi table. Here is an example of how to
enable multiwriter support using the Spark Data Source API:

import org.apache.spark.sql.SaveMode 
import org.apache.spark.sql.SparkSession 
 
val spark = SparkSession.builder() 
  .appName("Hudi Multiwriter Example") 
  .config("spark.serializer", 
"org.apache.spark.serializer.KryoSerializer") 
  .getOrCreate() 
 
// Each concurrent writer would read from its own source 
val df_1 = spark.read.json("/path/to/source_data_1.json") 
 
df_1.write.format("hudi") // "hudi" is the recommended format 
alias 
  .option("hoodie.write.concurrency.mode", 
"optimistic_concurrency_control") 
  .option("hoodie.write.lock.provider",  
"org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvid
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er") 
  .option("hoodie.write.lock.zookeeper.url", "<zookeeper_url>") 
  .option("hoodie.write.lock.zookeeper.port", "<zookeeper_port>") 
  .option("hoodie.write.lock.zookeeper.lock_key", "<lock_key>") 
  .option("hoodie.clean.failed.writes.policy", "EAGER") 
  .option("hoodie.table.name", "hudi_table") 
  .option("hoodie.datasource.write.operation", "upsert") 
  .option("hoodie.datasource.write.recordkey.field", "id") 
  .option("hoodie.datasource.write.precombine.field", "ts") 
  .mode(SaveMode.Append) 
  .save("/path/to/hudi_table")

Single Writer and Multiple Table Services
In scenarios where you have a single writer and multiple table services, you
can configure the table services to run in the inline, async execution, or
standalone modes.

Here is an example of how to configure inline table services where the
services will run in the same process as the writer:

# Enable inline table services 
hoodie.compact.inline=true 
hoodie.cluster.inline=true 
hoodie.clean.inline=true

The modern and recommended way to run table services concurrently is to
schedule them as separate jobs. For example, you would run a dedicated
HoodieCompactor or HoodieClusteringJob utility job that
operates on the table independently of the ingestion writer. This provides
better resource isolation and control. If this option is selected, confirm that
writer jobs do not have inline table services enabled.

Disabling Multiwriter Support
If you want to disable multiwriter support, you can remove the multiwriter
configurations from your Hudi properties file or override them with default
values:



# Disable multiwriter support 
hoodie.write.concurrency.mode=single_writer 
hoodie.cleaner.policy.failed.writes=EAGER

Tips and Best Practices
When working with Hudi in multiwriter environments, adhering to best
practices is crucial for ensuring optimal performance, minimizing resource
contention, and avoiding common pitfalls. This section provides a
comprehensive guide to best practices, tips, and performance optimization
techniques, drawing from real-world data lakehouse architectures and
database systems.

Implement Partitioning and File Grouping
One of the most effective ways to minimize conflicts in multiwriter
environments is to partition your data effectively. By dividing your data into
independent partitions or file groups, you can ensure that writers operate on
distinct portions of the data, reducing the likelihood of conflicts.

Example: In a time-series dataset, you would partition the data by date (e.g.,
year=2023/month=10/day=01). This allows multiple writers to
operate on different partitions simultaneously without overlapping.

TIP
Use Hudi’s clustering feature to optimize file sizes and grouping within partitions,
ensuring that writers operate on well-organized data.

Enable Early Conflict Detection
In a standard Hudi write operation, conflict detection is a critical safeguard
for data integrity that traditionally occurs during the final commit phase.
After a writer has performed the computationally expensive work of
processing data and writing new data files (e.g., Apache Parquet files) to
storage, it attempts to atomically publish its changes to the Hudi timeline. It



is only at this final stage that Hudi’s concurrency control mechanism
validates the transaction, checking if another writer has already committed
changes to the same underlying files since the current operation began. If a
conflict is found, the entire write operation must be aborted. This late-stage
failure means that all the compute resources consumed during data
processing and file generation are wasted, forcing a costly retry.

To mitigate this inefficiency, Hudi introduced early conflict detection. This
feature fundamentally shifts the conflict check from the end of the write
cycle to the beginning, integrating it directly into the initial phase of the
write operation.

Here’s how the enhanced write flow with early detection works:

1. Declare intent: Before starting the expensive data processing stage,
the writer first declares which specific file groups it intends to
modify. It marks these files as part of a new, pending commit on
the timeline.

2. Check timeline: The writer then immediately checks the timeline to
see if any other transaction has already successfully committed
changes to the same file groups since its own transaction started.

3. Fail fast or proceed: If a conflict is detected, the write operation is
aborted instantly, before any significant compute resources are
spent on processing data. This provides immediate feedback and
avoids wasting resources. If no conflict is found, the writer
proceeds with the expensive task of writing the data files, now with
a high degree of confidence that the final commit will succeed.

By adopting this “fail-fast” approach, early conflict detection minimizes the
cost of concurrency conflicts. It is especially beneficial in large-scale
multiwriter deployments where the probability of concurrent writes is
higher, and the resource cost of a failed write operation can be substantial.
This proactive validation ensures that compute cycles are reserved for
transactions that are likely to succeed, significantly improving the
efficiency and throughput of the data lakehouse.



Example: In a large-scale deployment with multiple writers, early conflict
detection can prevent a writer from processing an entire batch of data, only
to abort at the commit phase due to a conflict.

Early conflict detection can be enabled with this configuration:

hoodie.write.concurrency.early.conflict.detection.enable=true

Optimize Locking Mechanisms
Choose the appropriate locking mechanism based on your infrastructure and
workload. For example:

Use Zookeeper-based locking for on-premises deployments with
strong consistency requirements.

Use DynamoDB-based locking for cloud native deployments on
AWS, where scalability and ease of management are priorities.

For cloud providers without a native locking mechanism (e.g.,
Google Cloud or Azure), Zookeeper-based locking can be used by
running a Zookeeper cluster on virtual machines. Alternatively,
you can implement custom locking strategies by extending Hudi’s
pluggable lock provider interface to leverage cloud-specific
services like Google’s Zonal Lock or Azure’s Blob Lease API.

In high-concurrency environments, numerous writers competing for the
same lock can cause delays and timeouts, thus decreasing throughput. To
mitigate this, tune lock provider settings by configuring retries for lock
acquisition, making write jobs more resilient.

Example: Configure retries for lock acquisition to handle transient failures
or high contention:

hoodie.write.lock.wait_time_ms=10000  # Wait up to 10 seconds for 
a lock 
hoodie.write.lock.num_retries=5       # Retry up to 5 times



Run Asynchronous Table Services
Run table services such as compaction, clustering, and cleaning
asynchronously to avoid blocking the primary ingestion pipeline. This
ensures that writers can continue ingesting data while table services
optimize the table in the background. Check out Chapter 6 for more details.

Example: In a streaming pipeline, compaction in async execution mode can
rewrite large files in the background without impacting the ingestion of new
data:

hoodie.compact.inline=false 
hoodie.compact.schedule.inline=true 

Reduce Write Conflicts and Wasted Resources
In multiwriter environments, conflicts can lead to aborted jobs and wasted
compute resources, especially if they are detected late in the write lifecycle.

Partitioning your workload is the most effective way to minimize conflicts,
as it naturally separates writers and eliminates the chances of conflicts.
Additionally, enabling early conflict detection can avoid wasting resources
on writes destined to fail, as it checks for conflicts before the data writing
phase and aborts the job early.

Example: To further optimize performance, enable NBCC to allow writers
to proceed without waiting for locks:

hoodie.write.concurrency.mode=non_blocking_concurrency_control

Prevent Data Duplication When Using Multiple Writers
A key limitation to understand is that Hudi’s multiwriter mode does not
guarantee data deduplication across concurrent writers. If two writers ingest
a record with the same primary key at the same time, you may end up with
duplicate records in your table, as each writer only performs deduplication
against the data visible at the start of its own transaction.



A best practice for Hudi is to ensure idempotent sources; for example,
partition your source data by record key to prevent concurrent writes for the
same data. If controlling the source isn’t possible, use a staging Hudi table
for raw data ingestion; run a separate, single-writer job to deduplicate; and
then write to a final, clean table.

Summary
Concurrency control is a cornerstone of data systems, ensuring data
consistency and operational efficiency in environments with simultaneous
data reads and writes. Hudi extends this principle to distributed data
lakehouses, providing mechanisms that allow multiple writers to operate
concurrently while maintaining the integrity of the data. By allowing
multiple writers to operate concurrently, Hudi addresses the limitations of
single-writer systems and provides the flexibility needed to handle complex
data ingestion, updates, and deletions.

This chapter provided a comprehensive overview of concurrency control in
Hudi, exploring its importance in ensuring data consistency and enabling
efficient multiwriter scenarios. We discussed how Hudi’s optimistic
concurrency control mechanism allows multiple writers to operate
concurrently while minimizing conflicts. The different locking mechanisms
available in Hudi, along with their pros and cons, were also examined,
giving you the knowledge to choose the best option for your needs.

Despite its strengths, Hudi’s concurrency control has limitations that
warrant attention. Challenges include the potential for late conflict detection
leading to resource wastage, granularity constraints in conflict detection at
the file group level, and scalability bottlenecks in lock providers under
extreme concurrency. Understanding these limitations and applying best
practices—such as careful workload partitioning and the use of early
conflict detection—can help organizations leverage Hudi effectively. By
addressing the inherent complexities of distributed data lakehouses, Hudi
provides a powerful framework for scalable and consistent data
management.



Finally, the chapter addressed the limitations of Hudi’s multiwriter
implementation, such as the lack of cross-writer data deduplication and
potential resource wastage due to conflicts. By understanding these
limitations, you can better plan and optimize your Hudi deployments for
maximum efficiency and reliability. As you venture further into the world
of Hudi, remember that mastering concurrency control is crucial for
building robust and scalable data lakehouse solutions.



Chapter 8. Building a
Lakehouse Using Hudi
Streamer

In modern organizations, data silos create more than just fragmented data;
they foster fragmented efforts. Teams across the business often find
themselves independently solving the same data engineering problems,
building similar ETL tools, and defining their own conventions for schemas
and formats. This redundancy not only wastes valuable resources but also
erects significant barriers to sharing and normalizing data. The core
challenge becomes a strategic one: how can an organization move beyond
this inefficiency to provide a standardized set of tools and a unified
platform? How can it empower teams to collaborate on ingesting and
transforming data, while sharing common datasets, catalogs, and
monitoring dashboards?

The modern answer to this challenge is the data lakehouse, and Apache
Hudi is a particularly strong choice for building one. If your organization is
suffering from data silos and has not yet converged on a single data storage
solution, Hudi offers more flexibility than the alternatives. Not only does
Hudi permit different parts of an organization to maintain sovereignty over
their data stacks and architectures, but it also provides a specialized
ingestion tool—Hudi Streamer—that can connect to a wide array of
upstream sources and streamline the construction of a data lakehouse.

In this chapter, we’ll meet Alcubierre, a fictional airline company grappling
with these common data silo challenges. As we imagine ourselves as part of
the team spearheading Alcubierre’s data unification effort, we’ll explore
how Hudi Streamer can be used to ingest data from the company’s diverse
sources. We will then walk through an end-to-end application example,
sharing our favorite lakehouse ingestion tips and tricks along the way.



Lastly, we’ll deepen our understanding of Hudi Streamer by exploring its
various options to support the different facets of building a lakehouse
platform.

Alcubierre’s Data Silo Woes
Established roughly 10 years ago, Alcubierre is still a relatively young
airline. It quickly gained market traction by offering novel perks and loyalty
programs, but it is starting to develop a reputation for poor customer
experience. The company’s fragmented data systems often cause
maintenance-related flight delays, and the siloed data makes it difficult to
estimate disruptions or implement predictive maintenance. Complaints are
difficult to investigate and are often exacerbated by the data silos that have
emerged from Alcubierre’s various departments (Customer Service,
Operations, Aircraft Maintenance, etc).

Over the past decade, each Alcubierre department has been permitted to
develop mostly independently, establishing its own technology stack and
architecture. This independence, which once enabled Alcubierre to rapidly
bootstrap a successful global business, has gradually produced data silos
that are now hindering the business from developing a holistic
understanding of customer needs and organizational inefficiencies. In the
following sections we’ll learn a bit more about these silos, some of which
will probably sound familiar!

Data Quality Assurance and Deduplication
The Customer Service department’s mission is to ensure a positive travel
experience for Alcubierre passengers by providing efficient assistance in a
friendly, personalized manner. This department employs a multitiered help
desk to triage customer issues and provide resolutions as quickly as
possible. It uses specialized customer relationship management (CRM)
software to store records of all calls to the help desk, together with a lot of
metadata about the customer’s issue and the final resolution. Records are



bulk-exported from the CRM system as CSV files and are uploaded to
object storage on AWS S3 nightly (Figure 8-1).

Figure 8-1. Data organization within Alcubierre’s Customer Service department

Unfortunately, the multitiered structure of the help desk sometimes leads to
duplicate records. This can happen in cases where the same customer
contacts the help desk multiple times, or when help desk operators make
data entry errors, such as entering the wrong customer ID or ticket number.
Alcubierre has developed some effective deduplication techniques, but they
can only be applied to the data after it has been exported to S3 and can be
compared to the primary customer database, which is managed by the
Finance team. Whenever the CRM export fails or is delayed, the object



storage in S3 no longer reflects the most current state of customer
interactions, which delays data cleaning and deduplication jobs.

Heterogeneous Data and Schema Evolution
Alcubierre’s Safety and Security department ensures the highest standards
of safety for passengers, crew, and aircraft by implementing safety
protocols, doing risk management and emergency preparedness,
maintaining regulatory compliance, and investigating incidents. The
department recently adopted a microservices architecture to coordinate the
multiple services using streaming data. These services manage safety
auditing, risk assessment, compliance tracking, and incident reporting, and
they share information via Kafka streams. Eventually, incident records are
persisted to a relational database for long-term storage (e.g., for compliance
audits); see Figure 8-2.



Figure 8-2. Data organization within Alcubierre’s Safety and Security department

Each microservice emits data in different formats and generates different
types of metadata. For instance, the incident reporting service records
timestamps in UTC, while the compliance tracking service is localized
(compliance varies by region) and records in local time. This can lead to
confusion when correlating events or incidents across services. There have
already been several incidents where API changes were not effectively
socialized; the schema in the risk assessment service was updated but not



synchronized with the incident reporting service, which led to a mismatch
that resulted in breaking changes downstream.

Data Management, Localization, and Consistency
The Aircraft Maintenance department’s crews at all 10 of Alcubierre’s hubs
around the world use a common software application to track maintenance,
repairs, and operations (often referred to as the MRO system). This software
enables the maintenance chief to keep track of the engineers’ maintenance
schedules, aircraft maintenance logs, and parts inventory. These and other
engineering records are persisted to a PostgreSQL database (Figure 8-3).



Figure 8-3. Data organization within Alcubierre’s Aircraft Maintenance department

Discrepancies occur when parts are tracked differently at various Alcubierre
hubs. These parts are sometimes logged with different terminologies
depending on local conventions, and inconsistent localization practices lead
to errors in interpreting maintenance logs or part descriptions. Because of
limitations of the MRO software, inventory counts do not always sync
correctly across locations, leading to overstocking and stockouts.

Problem Recap



Alcubierre must identify an architectural solution to resolve the challenges
in its data silos:

A centralized data repository is needed to host datasets and enable
business analytics across multiple departments, despite varying
source data storage and formats, such as CSV files in S3 buckets,
messages in Kafka topics, and records in Postgres databases.

The solution should support common data processing tasks,
including deduplication and record format conversions, such as
timestamp normalization.

Additionally, the solution must enforce schema management and
support schema evolution to accommodate changes from upstream
data sources.

Lakehouse Architecture to the Rescue
Alcubierre has been advised to build a lakehouse to enable near real-time
insights and proactive decision making. As an initial rollout, Alcubierre
decides to build the lakehouse with source data from three departments:
Aircraft Maintenance, Customer Service, and Safety and Security.

This “dream” lakehouse, shown in Figure 8-4, aims to enhance the flow of
information between the departments, improving their individual
functionality while also uncovering new initiatives across the board that
could drive significant operational efficiencies and increase profitability.





Figure 8-4. Alcubierre’s planned lakehouse design

Luckily for Alcubierre, we can use Hudi to build a comprehensive
lakehouse platform, leveraging Hudi Streamer as a unified framework. In
the following sections, we’ll learn more about what Hudi Streamer is and
how we can use it to build a lakehouse tailored to Alcubierre’s existing
infrastructure.

What Is Hudi Streamer?
Hudi Streamer is a utility tool that runs as an Apache Spark application. It
comprises a set of Java classes packaged in the Hudi bundle jars, which are
publicly available for download via the Maven repository. Running Hudi
Streamer is much like running any standard Spark application, with the
hudi-utilities-bundle jar being used.

TIP
You may use the wget tool to download the jar from the public Maven repository:

export REPO_URL=<URL>  
export HUDI_UTILITIES_JAR=<Jar path>  
wget $REPO_URL/$HUDI_UTILITIES_JAR

The URL for Hudi release artifacts is
https://repository.apache.org/content/repositories/relea
ses.
The jar path is like org/apache/hudi/hudi-utilities-
bundle_2.13/1.1.0/hudi-utilities-bundle_2.13-1.1.0.jar.

In this example, you are downloading the Hudi 1.1 bundle jar that works with Spark 3.5
and Scala 2.13. Note that the hudi-utilities-bundle jar works with the latest
supported version of Spark for the corresponding Hudi release version. Please refer to
the release notes for the most up-to-date information.

From an API hierarchy perspective, Hudi Streamer implements the Hudi
Writer interface, which internally wraps the HoodieWriteClient to

https://oreil.ly/r50Uj


handle write operations. As depicted in Figure 8-5, the client write layer,
which includes the Hudi core models, is responsible for executing
transactional writes in accordance with the Hudi table format. The Hudi
Streamer layer defines and implements capabilities to interact with various
lakehouse components, including ingesting diverse data source formats,
plugging into schema registries, and synchronizing with data catalogs.





Figure 8-5. Dissecting the Hudi Streamer API hierarchy

Hudi Streamer is designed to simplify the often complex process of data
ingestion into lakehouses. Acting as a bridge between upstream data
sources and Hudi tables, it offers configurable and customizable interfaces
for managing the various components shown in the figure.

By adjusting a few configurations, each department can tailor Hudi
Streamer jobs to different data sources, while the underlying infrastructure
—such as the job scheduler, monitoring service, and other components—
remains use-case agnostic and highly reusable.

In the next section, we will delve into the relevant options offered by Hudi
Streamer and explain how its adoption helped Alcubierre overcome the data
silo challenges outlined earlier.

Getting Started with Hudi Streamer
Hudi Streamer offers a variety of customizable interfaces, as illustrated in
Figure 8-5, along with a comprehensive set of configuration options. This
section will explore the specific interfaces and options that are pertinent to
addressing Alcubierre’s previously discussed problems. By the end of this
section, you will have a glimpse of Hudi Streamer’s capabilities and how it
can help address challenges in real-world scenarios.

Ingesting Data from S3
Alcubierre’s Customer Service department stores nightly call records in S3
buckets. Daily, CSV files are deposited into an S3 path with a prefix in the
format yyyy/MM/dd. When configuring its Hudi Streamer application, the
Customer Service department’s first step is to select the appropriate
Source class.

The Source is an abstraction provided by Hudi Streamer for delivering
upstream source data. Its main responsibility is to fetch data from the source
system in input batches for processing and writing. By extending the



Source abstract class and supplying the implementation to Hudi Streamer,
users can seamlessly integrate Hudi Streamer jobs with a wide range of data
systems.

The Customer Service department should set the --source-class
option to
org.apache.hudi.utilities.sources.CsvDFSSource, an
implementation offered out of the box by the hudi-utilities-
bundle jar. This class is specifically designed to load CSV files from a
storage system path. When these daily Hudi Streamer jobs commence, the
Source reads records in a distributed manner from files located at the path
specified by the --target-base-path option.

The CSV files produced daily by the Customer Service department often
contain duplicate records. To address this, the department should enable the
--filter-dupes option, a Boolean flag in Hudi Streamer. This option
removes duplicates from the loaded records, significantly enhancing the
quality of downstream analysis results.

Ingesting Data from Kafka
Kafka is a widely used event streaming platform known for its high
throughput and low latency. Kafka producers send data to specific topics
within the Kafka platform, where the data is maintained as ordered logs,
ensuring data integrity. Applications downstream, known as Kafka
consumers, subscribe to these topics and process the data in real time.

To enable the storage of Kafka data in the lakehouse for Alcubierre’s Safety
and Security department, the team should configure two critical options for
its Hudi Streamer applications. Each application will consume data from a
Kafka topic and write it to a corresponding Hudi table:

The hoodie.streamer.source.kafka.topic option was
set to define the specific Kafka topic that Hudi Streamer would
consume from.



The --source-class option was configured as
org.apache.hudi. utilit ies. 
sources.AvroKafkaSource, designating it as the Kafka
consumer group responsible for pulling messages from the target
Kafka topic.

Handling schema evolution
The Safety and Security department should also set up a schema registry, a
service that centrally manages the schemas of all Kafka topics. By
leveraging this, the team can enforce a backward-compatible policy for
schema evolution. This policy will ensure that schema changes are limited
to adding new nullable columns and widening existing column types (e.g.,
promoting an int column to long). This approach will help ensure that
Kafka consumers don’t break in the event of schema changes.

To integrate Hudi Streamer with the schema registry, the Safety and
Security department should configure the following options:

Set
hoodie.streamer.schemaprovider.registry.url to
point to the schema registry URL.

Set --schemaprovider-class to
org.apache.hudi.utilities.schema.Schema 
RegistryProvider, indicating that the source data adheres to
the schema provided by the target registry.

Normalizing timestamps
The Safety and Security department wants to address discrepancies in
timestamp formats across different Kafka topics. Some topics store
timestamps as Unix timestamps in long format, while others use human-
readable formats in various time zones. To resolve this, the team can
leverage the Transformer interface provided by Hudi Streamer.

Upon retrieving incoming data from the Source, the Transformer
performs lightweight transformations, such as adding or dropping specific



columns or flattening the schema. The Transformer processes a Spark
dataset and outputs the transformed dataset, enabling seamless data
manipulation to meet the requirements of the ingestion pipeline. The --
transformer-class option accepts one or multiple class names of
Transformer implementations. When multiple transformers are given, they
are applied sequentially, meaning the output of one transformer serves as
the input for the next. This chained approach provides flexibility and
simplifies code maintenance.

The Safety and Security department can develop a Transformer
implementation to convert designated timestamp columns to ISO-8061
format in UTC. By supplying this implementation via the --
transformer-class option, the Hudi Streamer jobs will apply
common conversion logic and write normalized timestamp values to the
Hudi tables. This standardization will improve data quality and reduce
errors and interpretation overhead during further processing.

Ingesting Data from RDBMS
The Aircraft Maintenance department stores its application data in Postgres
databases. To store this data in a lakehouse, we need to extract it first so that
we can replicate it from Postgres to lakehouse storage. Because SQL
queries usually retrieve only the latest record states, and performing
periodic full dumps of the tables would be impractical, the change data
capture (CDC) incremental extraction technique is the preferred approach
for this scenario.

Postgres, like many other OLTP databases, records all transactional changes
—such as inserts, updates, and deletes—in its write-ahead log (WAL). CDC
is a process that reads and replays these changes, allowing the CDC
application to restore the exact states of the database tables. More
importantly, as new changes are continuously applied to the original tables,
the CDC application can efficiently process these changes and keep the
replicated data up-to-date.



Debezium is software designed to implement CDC processes for various
databases, including Postgres. It operates as a Postgres plug-in that reads
the database’s WAL and functions as a Kafka producer, sending the
extracted data to Kafka topics for flexible downstream consumption.

Hudi Streamer supports processing Debezium CDC data out of the box. The
Aircraft Maintenance department can install Debezium on its Postgres
database and use the Kafka platform managed by the Safety and Security
department to store the Debezium output data in Kafka topics. The team
should configure the --source-class option as
org.apache.hudi.utilities.sources.debezium.Postgre
sDebeziumSource, enabling Hudi Streamer to process the Debezium
data format in Kafka.

Similar to the Safety and Security department’s Kafka Source setup, the
Aircraft Maintenance department should specify the Kafka topics to read
from and use a schema registry to govern the schemas. Additionally, the
team can implement custom Transformers in some Hudi Streamer jobs to
standardize naming conventions.

By properly configuring Hudi Streamer, the Aircraft Maintenance
department can be successfully onboarded to Alcubierre’s lakehouse
platform so that it too can benefit from improved data quality, gain broader
insights, and enhance its maintenance management processes.

Hudi Streamer supports a wide range of data sources to ingest data from.
Table 8-1 summarizes all the sources that are supported at the time of
writing.



Table 8-1. Hudi Streamer data ingestion sources

Source class What and where is the data source?

MysqlDebeziumSource, Post
gresDebeziumSource

CDC data from Debezium connector
installed on MySQL and Postgres

JdbcSource Data from RDBMS data sources

AvroDFSSource, CsvDFSSour
ce, JsonDFSSource, ORCDFSS
ource, ParquetDFSSource

Apache Avro, CSV, JSON, Apache ORC,
and Apache Parquet data on a DFS storage
path

AvroKafkaSource, JsonKafk
aSource, ProtoKafkaSource

Consume Avro, JSON, and Protobuf
records from a Kafka topic

PulsarSource Consume data from an Apache Pulsar
topic

HoodieIncrSource Hudi table; use Hudi incremental query to
fetch changes

HiveIncrPullSource Apache Hive table; use Hudi incremental
query to fetch changes

SqlSource, SqlFileBasedSo
urce

Spark table; use SQL to query and fetch
records

GcsEventsSource, GcsEvent
sHoodieIncrSource,
S3EventsSource,
S3EventsHoodieIncrSource

Cloud storage events; support building a
reliable pipeline to process files on GCS
or AWS S3; see this blog for details

Hudi Streamer in Action

https://oreil.ly/xcXBZ


Building on our exploration of Hudi Streamer’s capabilities in the previous
section, we now turn to a practical end-to-end example to showcase its real-
world application. We’ll demonstrate the process of ingesting data into a
lakehouse using Hudi Streamer, focusing on a sample dataset from
Alcubierre’s Aircraft Maintenance department. This example will illustrate
how to configure each component of the data pipeline to ensure complete
and timely data ingestion.

Figure 8-6 illustrates our example application. It begins by generating
sample data, which is stored in a Postgres database. We have designed a
maintenance_schedule table based on Alcubierre’s Aircraft
Maintenance department and generated sample records for insert, update,
and delete operations. Table 8-2 shows the table schema.

Table 8-2. Schema of the maintenance_schedule table

Column
name Data type Remark

schedule_id INT The primary key to the table

aircraft_id VARCHAR(255) The aircraft for maintenance

due_date DATE Maintenance task due date

technician_id
s

INT[] List of assigned technicians for the
maintenance task



Figure 8-6. Ingesting data into a data lakehouse using Hudi Streamer (arrows indicate actions)



As explained in “Ingesting Data from RDBMS”, the Aircraft Maintenance
department uses Debezium and Kafka to extract and store Postgres data via
a CDC process. The lakehouse ingestion component is implemented using
Hudi Streamer, which is configured to consume data from Kafka, integrate
with the schema registry, and write to Hudi tables in lakehouse storage. The
demo example replicates this setup to mimic the real-world configuration.

Additionally, the demo synchronizes the Hudi table with Hive Metastore, a
data catalog service that integrates with Presto, a popular query engine, and
Apache Superset, a data visualization platform. By reviewing the
configuration details in this example shown throughout the remainder of
this section, you will gain a deeper understanding of how Hudi Streamer
operates and what a lakehouse platform looks like in practice.

NOTE
The following sections outline a local development setup for the end-to-end application,
providing a reference for readers. Please note that when running pipelines in production,
you should revisit these configurations and adjust or add more as needed, based on your
specific environment and setup.

Preparing the Upstream Source
The upstream source consists of Postgres with Debezium installed, and
Kafka with the schema registry connected. We use Debezium’s official
Docker image for Postgres, which has the Debezium plug-in preinstalled
and configured. In docker-compose.yml, we add this entry to run Postgres
and Debezium as a service named postgres:

postgres: 
  image: debezium/postgres:16-alpine 
  hostname: postgres 
  container_name: postgres 
  ports: 
    - 5432:5432 
  environment: 
    POSTGRES_USER: myuser 

https://prestodb.io/
https://superset.apache.org/
https://oreil.ly/NDHt3


    POSTGRES_PASSWORD: mypassword 
    POSTGRES_DB: postgres

Creating the first batch of data
Once the service is up and running, we need to prepare sample data in
Postgres as the source data. Log in to Postgres to access the Postgres
console by running:

docker compose exec -it postgres psql -U myuser -d postgres

From the Postgres console, we execute SQL statements to create the table
and insert the first batch of records:

CREATE TABLE debezium_signal 
( 
    id   VARCHAR(100) PRIMARY KEY, 
    type VARCHAR(100) NOT NULL, 
    data VARCHAR(2048) NULL 
); 
 
CREATE TABLE maintenance_schedule 
( 
    schedule_id      INT PRIMARY KEY, 
    aircraft_id      VARCHAR(255) NOT NULL, 
    due_date         DATE         NOT NULL, 
    maintenance_type VARCHAR(255) NOT NULL, 
    technician_ids   INT[]        NOT NULL 
); 
 
INSERT INTO maintenance_schedule 
    (schedule_id, aircraft_id, due_date, maintenance_type, 
technician_ids) 
VALUES (1, 'AC001', '2024-08-15', 'corrective', ARRAY[101, 102, 
103]), 
       (2, 'AC002', '2024-09-01', 'routine', ARRAY[104, 105]), 
       (3, 'AC003', '2024-07-30', 'routine', ARRAY[106]), 
       (4, 'AC001', '2024-10-05', 'routine', ARRAY[107, 108]);

Setting up the Kafka stack
Now we prepare the Kafka stack, which consists of a few services including
the schema registry, Kafka broker, and Kafka Connect. Kafka brokers serve



as bridges between producers and consumers by routing their write and read
requests to the underlying servers and storage. Kafka Connect is the
pluggable, declarative data integration framework for Kafka. It supports
running configurable source and sink connectors for various Kafka
producers and consumers, respectively. Debezium is, in fact, implemented
as a type of source connector that is executed by Kafka Connect.

In our demo example, we use Confluent-maintained Docker images for the
Kafka stack. We define that Kafka broker to run as a service named
broker, and the connected schema registry as another service called
schema-registry that handles schema fetching requests at port 8081:

broker: 
  image: confluentinc/cp-kafka:7.6.1 
  hostname: broker 
  container_name: broker 
  ports: 
    - "9092:9092" 
  environment: 
    KAFKA_ADVERTISED_LISTENERS: <LISTENERS>  
 
schema-registry: 
  image: confluentinc/cp-schema-registry:7.6.1 
  hostname: schema-registry 
  container_name: schema-registry 
  depends_on: 
    - broker 
  ports: 
    - "8081:8081" 
  environment: 
    SCHEMA_REGISTRY_HOST_NAME: schema-registry 
    SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: 'broker:29092' 
    SCHEMA_REGISTRY_LISTENERS: http://0.0.0.0:8081

An example value can be
'PLAINTEXT://broker:29092,PLAIN TEXT_HOST 
://localhost:9092'.

Then, we define Kafka Connect as a service named connect running at port
8083. Note that connect needs to depend on the Kafka broker and schema
registry services. To make Debezium functional, we specify commands in

https://oreil.ly/gjjMu


the command section to install the Debezium connector in connect for
the Kafka source tasks (extracting CDC data and sending it to Kafka) to be
created upon request. The Debezium-extracted data is in Avro format for a
high compression ratio; therefore, we set Kafka’s value converter to
io.confluent.connect.avro.AvroConverter for decoding the
payload:

connect: 
  image: confluentinc/cp-kafka-connect-base:7.6.1 
  hostname: connect 
  container_name: connect 
  depends_on: 
    - broker 
    - schema-registry 
  ports: 
    - "8083:8083" 
  environment: 
    CONNECT_BOOTSTRAP_SERVERS: 'broker:29092' 
    CONNECT_REST_ADVERTISED_HOST_NAME: connect 
    CONNECT_VALUE_CONVERTER: 
io.confluent.connect.avro.AvroConverter 
    CONNECT_VALUE_CONVERTER_SCHEMA_REGISTRY_URL: http://schema-
registry:8081 
    CONNECT_PLUGIN_PATH: "/usr/share/java,/usr/share/confluent-
hub-components" 
  command: 
    - bash 
    - -c 
    - | 
      echo "Installing Connector" 
      confluent-hub install --no-prompt \ 
        debezium/debezium-connector-postgresql:2.5.4 
      # 
      echo "Launching Kafka Connect worker" 
      /etc/confluent/docker/run & 
      # 
      sleep infinity

Starting the Debezium connector tasks
Now the infrastructure for running the example application is ready, but no
data has been produced to Kafka yet, because the Debezium connector tasks
have not been started by Kafka Connect. To start those tasks, we need to tell



Kafka Connect what type of connector to run and how to set the needed
configurations. The connect service offers REST API endpoints at port
8083, where we can send registration requests to supply the needed
information. We define the configurations in register-
postgres.json as the payload for the REST API request:

{ 
  "name": "pg-debezium-connector", 
  "config": { 
    "connector.class": 
"io.debezium.connector.postgresql.PostgresConnector", 
    "tasks.max": "1", 
    "database.hostname": "postgres", 
    "database.port": "5432", 
    "database.user": "myuser", 
    "database.password": "mypassword", 
    "database.dbname": "postgres", 
    "topic.prefix": "hudi_tdg", 
    "time.precision.mode": "connect", 
    "tombstones.on.delete": false, 
    "table.include.list": "public.maintenance_schedule", 
    "signal.data.collection": "public.debezium_signal", 
    "signal.enabled.channels": "source,kafka", 
    "signal.kafka.topic": "signal-topic", 
    "signal.kafka.bootstrap.servers": "broker:29092" 
  } 
}

In this example, we set
io.debezium.connector.postgresql.PostgresConnector
as the type of Kafka Connect tasks that need to connect to postgres via
its opened port 5432 and using the database named postgres. The
Debezium connector implements a signaling mechanism, configured by the
settings prefixed with signal, to trigger actions on databases and manage
the bookkeeping of them. This is necessary for cases like running the CDC
data extraction job, which initially requires taking a snapshot action of the
target table. To store the actual data in Kafka, we will end up using a topic
named hudi_tdg.public.maintenance_schedule as specified
by topic.prefix and table.include.list.



To create the Kafka Connect tasks, we send the configurations defined in
the register-postgres.json to Kafka Connect’s REST API using
this command:

curl -i -X POST -H "Content-Type:application/json" \ 
  http://localhost:8083/connectors/ \ 
  -d @kafka-connect/register-postgres.json

Now the Debezium connector tasks are started, scanning the Postgres WAL
and sending the CDC data to the topic
hudi_tdg.public.maintenance_schedule. When more data is
being written to the Postgres table, the connector tasks will produce the
corresponding change data to the topic in real time.

Up until this step, we have completed the configuration for the upstream
source that can simulate the infrastructure used by the Aircraft Maintenance
department and provide sample source data for the
maintenance_schedule table.

Setting Up Hudi Streamer
As introduced earlier, running a Hudi Streamer job is similar to running any
standard Spark application. This typically involves using the spark-
submit command, specifying the main class, and including the necessary
jar files in the classpath. In this demo example, the main class is set to
org.apache.hudi.utilities.streamer.Hood ie Streamer,
and the required jar file—hudi-utilities-bundle—is used:

/opt/spark/bin/spark-submit \ 
  --name hudi_tdg_ch08_hudi_streamer \ 
  --class org.apache.hudi.utilities.streamer.HoodieStreamer\ 
  /opt/hudi/jars/hudi-utilities-bundle_2.13-<HUDI_VERSION>.jar \ 
  ... 
  --op UPSERT \ 
  --continuous

Here are two key options in the code snippet to highlight:



--op (write operation)

Because we’re processing data extracted from a Postgres database,
which includes inserts, updates, and deletes, this option is set to
UPSERT. This ensures that updates and deletes are correctly applied to
the corresponding records, replicating the Postgres table in the
lakehouse.

--continuous

Because we want to emulate a real-world scenario where new data
continuously flows into the Postgres database, this flag is added to run
Hudi Streamer as a continuous process. Without this flag, the Hudi
Streamer application would run once, process a single batch of upstream
data, and then exit.

To make the application fully functional, we will now configure the Source
for reading from Kafka, the writer-related options, and synchronize the
Hudi table with the data catalog implemented using the Hive Metastore in
the example.

Configuring the source
Hudi Streamer provides many pluggable interfaces, one of which is the
Source class. At the same time, Hudi offers many out-of-the-box
implementations for common use cases, and extracting Debezium data is
one of those. We set the --source-class as
org.apache.hudi.utilities.sources.debezium.Postgre
sDebeziumSource to consume the Kafka topic that contains the
Debezium-extracted CDC data. To connect to the Kafka broker and the
schema registry, we also supply a few other options, as follows. These
options primarily specify the addresses of the Kafka broker and the schema
registry, enabling Hudi Streamer to connect as a Kafka consumer and
continuously fetch new messages:



--source-class 
org.apache.hudi.utilities.sources.debezium.PostgresDebeziumSource 
--hoodie-conf \ 
hoodie.streamer.source.kafka.topic=hudi_tdg.public.maintenance_sc
hedule 
--hoodie-conf hoodie.streamer.schemaprovider.registry.url=<url> 
 

--hoodie-conf schema.registry.url=http://schema-registry:8081 
--hoodie-conf bootstrap.servers=broker:29092

An example URL can be http://schema-
registry:8081/subjects/hudi_tdg.public.maintenan
ce_schedule-value/versions/latest.

The extracted CDC data flowing through Kafka follows a Debezium-
specific schema. For example, the original Postgres table’s schema is nested
under the before and/or after fields, which represent the record’s state
before and after a change. To replicate the original Postgres schema,
PostgresDebeziumSource implements logic to flatten and extract the
relevant fields from these before and after fields in the Kafka
messages.

This is a key advantage of using Hudi Streamer: users don’t need to
implement this common transformation logic themselves. Hudi Streamer’s
out-of-the-box support for such scenarios reduces engineering efforts.

Configuring the Hudi writer
We set --target-base-path to specify where the target Hudi table
should be written to in the lakehouse storage system. To properly replicate
the update and delete operations, we need to set the target Hudi table’s
record key fields through
hoodie.datasource.write.recordkey.field such that the
fields correspond to primary key fields in the Postgres table. In addition, we
configure the hoodie.datasource.write.keygenerator.type
as nonpartitioned, and the
hoodie.datasource.write.precombine.field to an ordering



field provided by Postgres, named _event_lsn, for the desired
nonpartitioned table layout and the correct merging behavior, respectively:

--target-base-path /opt/external_tables/maintenance_schedule 
--hoodie-conf hoodie.datasource.write.recordkey.field=schedule_id 
--hoodie-conf 
hoodie.datasource.write.keygenerator.type=NON_PARTITION 
--hoodie-conf hoodie.datasource.write.precombine.field=_event_lsn

Working with data catalogs
As introduced in Chapter 4, data catalogs play a critical role in data
platform architecture, serving as contact points for query engines and as
centralized repositories for managing tables. Synchronizing with data
catalogs is a fundamental requirement for ingestion jobs. Hudi Streamer has
been designed to support this requirement from day one (see Figure 8-7).
When the --enable-sync flag is set, Hudi Streamer will perform the
“sync” operation on the target table in sequence using Hudi’s sync tools
specified by --sync-tool-classes. Typically, a sync tool will extract
metadata from the target table, like table properties, schema, and partition
values if applicable, and invoke the catalog service’s API to upload the
information.



Figure 8-7. Hudi Streamer’s data catalog sync flows

Multiple sync tools can be set by giving the fully qualified class name to
connect with different catalogs. Hudi offers these sync tool classes out of
the box as shown in Table 8-3.



Table 8-3. Supported data catalogs and their corresponding sync tool
classes

Data catalog Sync tool class

AWS Glue Data
Catalog

org.apache.hudi.aws.sync.AwsGlueCatalogSync
Tool

Google BigQuery org.apache.hudi.gcp.bigquery.BigQuerySyncTo
ol

Hive Metastore org.apache.hudi.hive.HiveSyncTool

DataHub org.apache.hudi.sync.datahub.DataHubSyncToo
l

In addition to specifying the class names, we need to configure a few
additional options to ensure proper connection to the catalog service. We
will discuss these options in the next section.

TIP
You can also add a Hudi extensions jar provided by Apache XTable to Hudi Streamer. In
addition, you can support syncing to XTable and converting to other table formats like
Apache Iceberg or Delta Lake so that you can connect to more catalogs such as Apache
Polaris. See more details in the documentation page.

Configuring the data catalog sync
In this demo example, we selected Hive Metastore as the data catalog
service. Hive Metastore requires a backend database to store the metadata
of all the tables registered with the catalog. For this demonstration, we used
Apache Derby, a lightweight, in-process relational database, as the backend
store for Hive Metastore. However, it’s important to note that in a
production environment, Derby is not recommended due to its limited
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scalability. Instead, users typically deploy more-scalable databases, such as
Postgres, as the backend store for Hive Metastore.

To connect with Hive Metastore, we configure the following options:

--enable-sync 
--sync-tool-classes org.apache.hudi.hive.HiveSyncTool 
--hoodie-conf hoodie.datasource.hive_sync.mode=hms 
--hoodie-conf hoodie.datasource.hive_sync.metastore.uris=\ 
  thrift://hive-metastore:9083 
--hoodie-conf hoodie.datasource.hive_sync.database=hudi_tdg

During the sync process, the Hudi table’s metadata is extracted and passed
to a Hive Metastore client, which invokes APIs to send the metadata to the
server. The catalog sync step is executed synchronously after Hudi Streamer
successfully commits the write; in other words, it runs “inline” with the
write process, thereby adding extra latency for each write.

TIP
Although catalog sync can usually finish within 1 minute, this could add a small delay
to start the next Hudi Streamer batch. Users who prefer to minimize write latency can
set up a dedicated process to run the needed sync tool classes separately.

Triggering CDC
With the Debezium connector extracting change data from Postgres and
sending it to Kafka, and with Hudi Streamer running in continuous mode to
consume the Kafka topic, the end-to-end CDC pipeline is now fully
operational. We can run SQL commands to insert new data and update and
delete existing records in the Postgres table, while Hudi Streamer performs
the corresponding upsert operations to capture these changes in the
lakehouse:

INSERT INTO maintenance_schedule 
    (schedule_id, aircraft_id, due_date, maintenance_type, 
technician_ids) 
VALUES (5, 'AC002', '2024-11-15', 'routine', ARRAY[105, 106, 



109]); 
 
UPDATE maintenance_schedule 
SET due_date = '2024-08-20' 
WHERE schedule_id = 1; 
 
UPDATE maintenance_schedule 
SET technician_ids = array_append(technician_ids, 109) 
WHERE schedule_id = 3; 
 
DELETE 
FROM maintenance_schedule 
WHERE schedule_id = 4;

Unlocking the Power of Analytics
Congratulations! At this point, you’ve successfully built a lakehouse
ingestion pipeline for the Aircraft Maintenance department. With the Hudi
table continuously receiving new writes and staying synchronized with its
entry in the data catalog, you can now leverage powerful query engines and
build analytics dashboards. This enables flexible SQL-based analysis and
visual insights into the datasets, unlocking the full potential of your data.

Verifying the data using SQL
We chose Presto, a popular SQL engine, to query the Hudi table via the
Hive Metastore catalog. We execute this command to first access the Presto
CLI console in our Docker-based stack:

docker compose -f ../compose.yaml exec -i presto \ 
  presto-cli --catalog hudi --schema hudi_tdg

From the console, execute this SQL command to list all the schedules and
the associated information in the table:

SELECT schedule_id, due_date, maintenance_type, technician_ids 
FROM maintenance_schedule 
ORDER BY schedule_id;



The SQL command returns a total of four rows. Referring to the SQL
commands shown in “Creating the first batch of data” and “Triggering
CDC”, we can verify the following:

The schedule with ID 1 has the updated due date as 2024-08-
20.

The technician with ID 109 has been added to schedule 3.

The schedule with ID 4 was deleted.

 schedule_id |  due_date  | maintenance_type | technician_ids 
-------------+------------+------------------+----------------- 
           1 | 2024-08-20 | corrective       | [101, 102, 103] 
           2 | 2024-09-01 | routine          | [104, 105] 
           3 | 2024-07-30 | routine          | [106, 109] 
           5 | 2024-11-15 | routine          | [105, 106, 109] 
(4 rows)

This demonstrates that changes made to the Postgres table have
successfully propagated to the end user, with all pipeline components
functioning properly. By building similar pipelines for other datasets across
departments, analysts can perform more complex analytical queries by
joining diverse datasets, enabling deeper insights and more tailored
solutions to meet business needs.

Visualizing the data using dashboards
Visualization through dashboards is a powerful way to engage stakeholders
with business insights. For this demonstration, we use Superset, a data
visualization platform, to build a simple chart on a dashboard. This allows
us to showcase the insights derived from the data in a clear and interactive
manner.

Superset supports connecting to a variety of data sources, including Presto.
Once configured to connect to the Presto instance running in our example
Docker stack, Superset can access the Hudi tables registered in the Hive
Metastore catalog. In this case, the maintenance_schedule table is



available as a source for creating a Superset dataset, allowing us to build
charts in a Superset dashboard.

Figure 8-8 illustrates a simple example dashboard for the Aircraft
Maintenance department. The pie chart, titled “Maintenance types,” is
configured to count the occurrences of different schedule types and display
their distribution in a clear and visual format. The dashboard can be set to
refresh at regular intervals, ensuring that as new data is processed by Hudi
Streamer, users continue to see the most up-to-date information in the chart.

Figure 8-8. Sample analytics dashboard showing maintenance type distribution

Exploring the Hudi Streamer Options



The teams at Alcubierre quickly noticed the benefits of a simplified
workflow, using Hudi Streamer as a standardized ingestion framework.
Subsequently, Alcubierre decided to establish a dedicated Infra team to
manage the infrastructure for running Hudi Streamer applications and
overseeing the configuration sets used by various departments leveraging
the lakehouse. This Infra team started serving as the tier 1 support for Hudi
Streamer jobs across departments, creating templates to allow the
departments to tailor their configuration sets according to specific business
requirements, ensuring smooth operations, and addressing any issues as
they arose. The Infra team combed through Hudi’s documentation and
examples and discovered many useful Hudi Streamer options, which we
will explore in this section.

Hudi Streamer’s wide range of features, although powerful, can present a
daunting array of options for new users. To streamline understanding and
utilization, we’ve categorized all of the options based on their functionality.
Table 8-4 presents eight distinct categories and their associated options.



Table 8-4. Available options supported by Hudi Streamer

Category Description Options

General Apply to general functionalities
such as printing help text and
passing Hudi configurations.

--help
--hoodie-conf
--props

Writer Control the behavior of the writer
used by Hudi Streamer.

--target-base-p
ath
--target-table
--table-type
--op
--filter-dupes
--base-file-for
mat
–-payload-class
--commit-on-err
ors

Bootstrap Control the bootstrapping operation
for the target Hudi table.

--run-bootstrap
--bootstrap-ove
rwrite
--bootstrap-ind
ex-class

Source Define the upstream data source and
control the consumption behaviors.

--source-class
--source-orderi
ng-field
--source-limit
--schemaprovide
r-class
--transformer-c
lass

Checkpoint Control the checkpointing
behaviors.

--checkpoint
--initial-check
point-provider
--ignore-checkp
oint
--allow-commit-
on-no-checkpoin
t-change



Category Description Options

Catalog sync Control the synchronization
behaviors with respect to data
catalogs.

--enable-sync
--force-empty-s
ync
--sync-tool-cla
sses

Table service Manage the scheduling of table
services such as compaction and
clustering.

--retry-last-pe
nding-inline-cl
ustering
--retry-last-pe
nding-inline-co
mpaction
--max-pending-c
ompactions
--max-pending-c
lustering
--compact-sched
uling-weight
--compact-sched
uling-minshare
--cluster-sched
uling-weight
--cluster-sched
uling-minshare
--disable-compa
ction



Category Description Options

Operational Control the runtime and operational
behaviors of the Hudi Streamer job.

--continuous
--min-sync-inte
rval-seconds
--delta-sync-sc
heduling-weight
--delta-sync-sc
heduling-minsha
re
--retry-on-sour
ce-failures
--retry-interva
l-seconds
--max-retry-cou
nt
--post-write-te
rmination-strat
egy-class
--ingestion-met
rics-class
--config-hot-up
date-strategy-c
lass
--spark-master

In most cases, Hudi Streamer ingestion jobs will only need a small subset of
available options for specific use cases. In the remainder of this section, we
will explore additional details about the options categorized as general,
source, and operational, providing extended knowledge beyond what was
covered in the previous section. For a comprehensive introduction to all
available options, please refer to Hudi’s documentation page.

General Options
This category includes general-purpose options. A key use case involves
passing arbitrary Hudi configurations or properties as key-value pairs to the
Hudi Streamer job, allowing the lower-level Hudi write client to honor
these settings. The repeatable --hoodie-conf option accepts Hudi
configurations in the form of key-value pairs, delimited by an equal sign.
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Alternatively, users can provide a filepath to a .properties or .conf file using
the --props option, which loads a set of key-value configuration pairs
from the file.

An example usage looks like this:

--hoodie-conf hoodie.upsert.shuffle.parallelism=100 
--hoodie-conf hoodie.delete.shuffle.parallelism=100 
--props file:///etc/conf/hudi.dev.properties

Note that the --hoodie-conf option has the highest precedence among
all configurations passed to Hudi Streamer, including those provided via --
props and other overlapping command-line options. In contrast,
configurations specified with --props have the lowest precedence.

TIP
A .properties file can include configurations from other .properties files by adding
include=<other properties file> on the first line. Properties defined later
in the file will overwrite those from the included file if applicable. This pattern is
commonly used to define base properties for most Hudi Streamer jobs on a lakehouse
platform, which are then included in domain-specific properties files. This approach
avoids redundant configurations and simplifies management.

Source Options
We covered the Source abstraction provided via --source-class in
“Getting Started with Hudi Streamer” and configured it for the demo
application in “Hudi Streamer in Action”. We now have a clear
understanding of the diverse support for ingesting data from various
sources. To further extend this information, we will briefly introduce the
additional Source implementations that are available.

The ParquetDFSSource is set to read plain Parquet files from file
storage systems, which can be the local file system, the Hadoop file system,
or cloud object stores like AWS S3, GCS, and Azure Blob Storage.



The HoodieIncrSource is used to read a Hudi table as the Source
through incremental queries. This is particularly useful when data in tables
needs further processing, such as joining with other tables. This Source
implementation uses checkpointed timestamps as incremental query
parameters to fetch only the changed data (new or updated) from the source
Hudi table. This approach reduces redundant data processing and enhances
the overall efficiency of the pipeline.

Following are some other notable Source implementations:

MysqlDebeziumSource

Similar to PostgresDebeziumSource but consumes the CDC data
extracted from MySQL databases

ProtoKafkaSource

Consumes from Kafka topics that contain Protobuf-encoded messages

PulsarSource

Consumes data from Pulsar

The --schemaprovider-class option defines how Hudi Streamer
retrieves the schema of the Source data. In “Getting Started with Hudi
Streamer”, we saw that Alcubierre’s Safety and Security department used
SchemaRegistryProvider to handle schema evolution scenarios.
Another commonly used schema provider is
FileBasedSchemaProvider, which points to an Avro schema file that
will be read to serve the schema. Note that not all Sources require a schema
provider; for example, ParquetDFSSource can self-provide the schema
information.

The --source-ordering-field option indicates a field in the Source
schema that determines the ordering between records. This is equivalent to
hoodie.datasource.write.precombine.field, which allows
incoming records to be merged before persisting to storage to save compute
costs.

https://pulsar.apache.org/


The --source-limit option sets an upper limit on the data amount to
read during each data fetch from the Source, enhancing control over the
ingestion process. The limit can be in terms of data bytes or number of
messages, depending on the Source class.

Operational Options
Hudi Streamer includes various features to ease operational efforts, offering
options to specify the running mode, control retry behavior, and fine-tune
scheduling priority.

Operation modes
Hudi Streamer operates in two modes:

Run once (default)

Designed for one-time batch ingestion. The Hudi Streamer job
terminates automatically after processing the fetched source data. This
mode is ideal for periodic batch processing, typically requiring external
scheduling tools to initiate the job.

Continuous

Enabled by adding the --continuous option (as previously
discussed in “Setting Up Hudi Streamer”). In this mode, Hudi Streamer
runs in a loop, continuously fetching source data up to the specified
limit (set by --source-limit) and writing to storage. This mode is
suitable for handling unbounded streaming data or self-processing a
sequence of input batches.

Minimum sync interval
The --min-sync-interval-seconds option functions in
conjunction with the continuous mode, defining the minimum allowable
interval in seconds between ingestion cycles. For example:



If an ingestion operation takes 40 seconds and the min-sync-
interval is set to 60 seconds, Hudi Streamer will pause for 20
seconds before starting the next cycle.

If an ingestion takes 70 seconds, the application will immediately
begin the next cycle without any pause.

This feature serves to ensure that adequate data accumulates at the upstream
source for processing, thus reducing the likelihood of generating small files
that can negatively impact performance.

Graceful termination
To gracefully shut down a continuously running Hudi Streamer, users can
implement a custom --post-write-termination-strategy-
class to define the conditions for job termination. An example is the
org.apache.hudi.utilities.streamer.NoNewDataTermin
ationStrategy, which ends the ingestion loop after a specified number
of data-pulling rounds.

This approach is particularly useful when processing large volumes of data
that would typically require substantial resources. Instead, the data can be
divided into batches, allowing Hudi Streamer to run continuously on a
smaller-scale cluster. The cluster can then self-terminate once ingestion is
complete, optimizing resource utilization.

Other operational options
The options --retry-on-source-failures, --retry-
interval-seconds, and -- max- retry-count define how the
Hudi Streamer job should behave upon running into errors. The options --
delta-sync-scheduling-weight and --delta-sync-
scheduling-minshare inform the Spark scheduler about how much
priority should be given to ingestion work compared to table service jobs
running within the same application. A detailed explanation of scheduling
prioritization can be found on the Spark documentation page.

https://oreil.ly/LbAge


Summary
In this chapter, we embarked on a detailed journey to build a data lakehouse
platform. We began by reviewing the challenges faced by Alcubierre, a
fictional airline grappling with data silos across its departments. Each
department had adopted its own data storage system, making it difficult to
gain insights across the organization and enhance overall business
processes. We concluded that a lakehouse architecture could significantly
address these issues.

To build a comprehensive lakehouse platform, we introduced Hudi
Streamer as the core component of the ingestion layer, explaining how its
versatile features and options could resolve Alcubierre’s problems. We then
focused on a specific department’s use case, constructing an end-to-end
application to demonstrate the working configurations and services
necessary for the lakehouse platform, and we highlighted the benefits
through a simulated real-world example.

Finally, we expanded our understanding of Hudi Streamer by exploring
additional notable options and their practical applications, providing
valuable insights for building lakehouses in practice.

In Chapter 9, we will delve into more aspects and use cases encountered in
production environments and explore how Hudi’s capabilities can address
critical business challenges.



Chapter 9. Running Hudi in
Production

Moving from development to production often brings a new set of
operational challenges. This chapter will equip you with the tools and best
practices to manage Apache Hudi deployments smoothly in complex
environments, ensuring reliable pipelines with minimal overhead.

First, we will explore tools for table management and recovery. You will
learn to master the Hudi CLI, a versatile tool for performing routine
maintenance, inspecting table metadata for troubleshooting, and executing
various operational tasks without writing custom code. We will also cover
Hudi’s savepoint and restore operations, which are essential for disaster
recovery.

Next, we will focus on integrating Hudi into data platforms. We will cover
platform features such as post-commit callbacks, which can be used to
trigger downstream processes in messaging systems like Apache Kafka or
Apache Pulsar, when actions complete on Hudi tables. You will learn how
to set up monitoring and export key metrics to systems like Prometheus or
Amazon CloudWatch to maintain visibility into system health. We will also
tackle the challenge of metadata consistency, explaining how to use Hudi’s
catalog sync services to keep your tables registered and accessible across
multiple data catalogs like AWS Glue and DataHub, as well as data
warehouses like Google BigQuery, Snowflake, and AWS Redshift.

Finally, we will delve into performance tuning, providing practical advice
and proven strategies to optimize your data pipelines for throughput,
latency, and cost-efficiency.

By the end of this chapter, you’ll have the knowledge to efficiently operate
Hudi data pipelines, tackling production challenges with ease while



building integrations and maintaining high performance for your
organization’s data lakehouse.

Operating with Ease
In production, operational efficiency can mean the difference between a
minor hiccup and a major outage. Hudi provides a comprehensive set of
tools to help data engineers and administrators manage their data
lakehouses effectively.

The CLI is central among these tools, enabling teams to perform routine
maintenance, troubleshooting, and administrative tasks without writing
custom code. Using the CLI, teams can quickly diagnose issues, apply
fixes, and maintain the health of their Hudi tables at scale. Hudi’s CLI
empowers teams to respond rapidly to production incidents and automate
routine maintenance tasks, instead of relying on ad hoc scripts or manual
file inspection. This section explores how to incorporate these tools into
your operational workflows, shifting from reactive firefighting to proactive
management, allowing your team to truly “operate with ease” even in the
most demanding data lakehouse production environments.

Getting to Know the CLI
Hudi’s CLI serves as the Swiss Army knife for engineers working with
Hudi tables. Through a simple terminal-based interface, engineers can
quickly examine commit histories, view metadata, perform recovery
operations, and execute maintenance tasks without writing custom code.
Let’s explore the essential CLI commands that will become part of your
operational toolkit.

Understanding the setup
The Hudi CLI is usable via the hudi-cli-with-bundle.sh script located under
the packaging/hudi-cli-bundle/ directory of Hudi’s code repository. The
shell script works with two bundle jars downloadable from the public
Maven repository:

https://github.com/apache/hudi


hudi-cli-bundle

Provides commands to run from the CLI

hudi-spark-bundle

Provides core Hudi functionalities and dependencies to work with
Apache Spark applications that interact with Hudi tables

TIP
You may use the wget tool to download the jars from the public repository:

export REPO_URL=<URL>  
export HUDI_CLI_BUNDLE_JAR=<CLI bundle jar path>  
export HUDI_SPARK_BUNDLE_JAR=<Spark bundle jar path>  
wget $REPO_URL/$HUDI_CLI_BUNDLE_JAR 
wget $REPO_URL/$HUDI_SPARK_BUNDLE_JAR

The URL for Hudi release artifacts is
https://repository.apache.org/content/repositories/relea
ses.
The jar path is like org/apache/hudi/hudi-cli-
bundle_2.13/1.1.0/hudi-cli-bundle_2.13-1.1.0.jar.
The jar path is like org/apache/hudi/hudi-spark3.5-
bundle_2.13/1.1.0/hudi-spark3.5-bundle_2.13-1.1.0.jar.

NOTE
In this example, you are downloading the Hudi 1.1 bundle jars that work with Spark 3.5
and Scala 2.13.

Running Hudi CLI commands will submit and run Spark jobs and perform
various operations with the target Hudi table (Figure 9-1). You need to have
a Spark installation available when running the CLI, typically specified by
SPARK_HOME environment variables.



Figure 9-1. Hudi CLI flow overview

Set up the CLI as follows:

# Set relevant environment variables 
export SPARK_HOME=</path/to/spark> 
export CLI_BUNDLE_JAR=</path/to/hudi-cli-bundle/jar> 
export SPARK_BUNDLE_JAR=</path/to/hudi-spark-bundle/jar>



Start the CLI using the script provided in the packaging/hudi-cli-bundle/
directory:

# Start the CLI 
./hudi-cli-with-bundle.sh

The script will take in the environment variables that were set before
running this. Alongside the ./hudi-cli-with-bundle.sh script, if you create a
directory conf/ and put hudi-defaults.conf in it, the CLI script will pick it up
and you can conveniently add Hudi configurations in the hudi-defaults.conf
to fine-tune those operations performed on Hudi tables.

TIP
Hudi CLI functionality is also available through SQL procedures using the CALL
command. This alternative provides a similar set of capabilities to the CLI, with the
main difference being that commands are executed through the Spark SQL console. For
detailed usage, please refer to its documentation.

Checking table info
Once the CLI is running, you can create new tables, connect to existing
ones, and inspect their properties.

Let’s say that you wanted to initialize a new Hudi table. The create
command sets up the table structure at a specified path, defining its name
and type:

hudi->create --path /path/to/new/table \ 
--tableName new_hudi_table --tableType COPY_ON_WRITE

If you’re working with an existing Hudi table, you’ll need to connect to it
before running commands. Use the connect command to point the CLI to
your table’s base path:

hudi->connect --path /path/to/table/trips

https://oreil.ly/GZefk


Once connected, you can read the table’s properties to verify its
configurations. The desc command provides a summary of important
properties, such as the table type, record keys, and schema:

hudi:trips->desc

To understand the structure of the data stored in your table, you can retrieve
the table schema, especially useful when validating data or planning
queries:

hudi:trips->fetch table schema

TIP
The command prompt initially shows hudi, indicating the CLI has been started and is
in an idle state. Once you connect to a table, it shows the table name, such as
hudi:trips, highlighting the table it’s currently working on.

Inspecting commits
The commit history provides a chronological view of all write operations
performed on the table. This helps track how data evolved over time and
helps diagnose issues.

To get a quick sense of recent activity, you can list the latest commits along
with key metrics, such as data volume. The commits show command
helps surface high-level trends or spot anomalies in recent writes:

hudi:trips->commits show --sortBy "Total Bytes Written" \ 
--desc true --limit 5

For deeper inspection, you may want to break down a specific commit by
partition to understand how data was distributed. The commit
showpartitions command provides detailed statistics on each partition
affected by the commit:



hudi:trips->commit showpartitions \ 
--commit 20220128160245447 \ 
--sortBy "Total Bytes Written" --desc true

When debugging a data issue, you may need to track down changes at the
file level. The commit showfiles command lists every base file or log
file updated as part of a write action, along with its partition path and other
metadata:

hudi:trips->commit showfiles \ 
--commit 20220128160245447 --sortBy "Partition Path"

Inspecting file slices and statistics
Hudi organizes data in file groups and file slices. The show fsview
command (fsview is short for file system view) helps you examine this
structure, while the stats command provides insights into file size
distribution and write amplification.

To view all file slices for each file group:

hudi:trips->show fsview all

To view just the latest file slice for each file group:

hudi:trips->show fsview latest --partitionPath "2022/01/01"

To examine file size distribution for a specific partition:

hudi:trips->stats filesizes \ 
--partitionPath 2022/01/01 \ 
--sortBy "95th" --desc true

To check write amplification (the ratio of records written to records
updated):

hudi:trips->stats wa



Managing table services
Running table services like compaction, clustering, and cleaning straight
from the CLI can come in handy for various operational scenarios (indexing
is not yet supported in the CLI). When you need to perform maintenance
tasks outside your regular Spark or Apache Flink processing jobs, the Hudi
CLI provides a convenient way to trigger these services on demand. This
can be particularly beneficial during maintenance windows. For example,
you can free up storage space without waiting for the next scheduled
cleaning operation.

Compaction can be executed to optimize read performance after the table
accumulates a series of deltacommit actions:

hudi:trips->compaction scheduleAndExecute --parallelism 200 --
sparkMemory 4G

You can run clustering to optimize the table’s storage layout and improve
query performance:

hudi:trips->clustering scheduleAndExecute --parallelism 200 --
sparkMemory 4G

You can also run a cleaning operation to reclaim storage after a large delete
operation:

hudi:trips->clean run --commitsToClean 10 --retainCommits 24 --
sparkMemory 4G

By using CLI commands to schedule and/or execute table services outside
of data processing jobs, you will have more flexibility in maintaining and
optimizing your lakehouse tables.

If you want to keep the writer job running, and run the table services from
the CLI, this will effectively be the standalone deployment mode for the
table services. Therefore, you should configure a lock provider and supply
the concurrency control–related configurations for the writer job and the



CLI program. Here is an example of using Apache Zookeeper as the lock
provider:

hoodie.write.concurrency.mode=optimistic_concurrency_control 
hoodie.write.lock.provider=\ 
org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvide
r 
hoodie.write.lock.zookeeper.url=<zk_url> 
hoodie.write.lock.zookeeper.port=<zk_port> 
hoodie.write.lock.zookeeper.lock_key=<zk_key> 
hoodie.write.lock.zookeeper.base_path=<zk_base_path>

You can add the configurations to the hudi-defaults.conf as instructed in
“Understanding the setup”, along with other Hudi configurations.

Performing Table Operations
Production data systems require operational flexibility to handle both
routine maintenance and unexpected issues. The Hudi CLI provides
commands to manage Hudi tables in various scenarios, from creating
recovery points and rolling back problematic changes to modifying
fundamental table properties and maintaining data quality. This section
introduces four key scenarios: creating and restoring savepoints for data
reprocessing, repairing data (e.g., deduplication) to maintain integrity,
changing table types to adapt to evolving workloads, and upgrading and
downgrading table versions to manage compatibility. With these tools,
administrators can confidently evolve Hudi tables to meet changing
requirements while maintaining reliability and performance.

Using savepoint and restore
Managing and recovering from data issues is a critical aspect of production
operations. Whether caused by corrupted writes, bad source data, or
application logic errors, the need to roll back to a known good state is a
common requirement. Hudi’s savepoint and restore feature addresses this
challenge by creating recoverable snapshots of table state.

Understanding savepoints



As the name suggests, a savepoint saves the table as of a specific commit
action time, allowing you to restore the table to this savepoint at a later
point if needed (Figure 9-2). When a savepoint is created, Hudi ensures that
the cleaning table service will not remove any files that are part of the
savepoint, preserving them for potential future restoration. Importantly, you
cannot create a savepoint for a commit that has already been cleaned up.
Usually, you would want to create a savepoint at one of the most recent
commit actions, which are very unlikely to be covered by the cleaning
process.

Conceptually, creating a savepoint is similar to taking a backup, but with an
important distinction: Hudi doesn’t make a new copy of the table data.
Instead, it saves the state of the table at a particular commit point so that
you can return to it if necessary.





Figure 9-2. Hudi CLI savepoint and restore

Using the restore process

The restore operation allows you to revert your table to a previously created
savepoint commit. This is a powerful but irreversible operation that should
be approached with caution. When you initiate a restore, Hudi will delete
all data files and commit files (timeline files) created after the savepoint
commit to which you’re restoring.

During a restore operation, it’s critical to pause all write operations to the
table, because they are likely to fail while the restore is in progress.
Similarly, read operations might also fail because snapshot queries would
be accessing files that could be deleted during the restore process.

Using savepoint and restore via the Hudi CLI

To create a savepoint, start the CLI command as instructed earlier, and then
connect to your Hudi table:

connect --path </path/to/your/hudi_table/> 
commits show 
savepoint create --commit <COMMIT_TIMESTAMP> --sparkMaster 
local[2]

Before performing a restore, it’s crucial to shut down all writer processes to
avoid data conflicts or corruption. Then, using the Hudi CLI, issue these
commands:

connect --path </path/to/your/hudi_table/> 
commits show 
savepoints show 
savepoint rollback --savepoint <SAVEPOINT_TIMESTAMP> --
sparkMaster local[2]

Replace <SAVEPOINT_TIMESTAMP> with the actual savepoint
timestamp that you want to restore to. This can be found using the
savepoints show command. The code example sets the Spark job to



run using the local mode for illustration purposes. You may need to
configure the relevant Spark options to choose a right setup for the job.

After a successful restore operation, the table will be reset to the exact state
it was in at the time of the savepoint. Both file slices and timeline entries
created after the savepoint will be deleted from the file system. The table
will contain only the records that were present at the time the savepoint was
created.

TIP
It’s recommended to create savepoints at regular intervals, especially before significant
operations. However, it’s also important to manage your savepoints by deleting older
ones when newer ones are created. The Hudi CLI provides a savepoint delete
command for this purpose.

NOTE
Remember that the cleaner process won’t remove files that are part of active savepoints.
If you don’t delete unnecessary savepoints, this can prevent storage reclamation and
lead to increased storage costs over time.

Repairing data with deduplication
Data pipelines occasionally produce duplicate records due to processing
retries, source system issues, or application logic errors. The Hudi CLI
provides deduplication functionality to identify and remove duplicates
based on record keys (Figure 9-3).



Figure 9-3. Hudi CLI deduplication

The deduplication repair command allows you to identify duplicate records
within a partition and generate repaired files that can be used to replace the
corrupted partition data, helping you maintain data integrity without having
to reprocess entire datasets:

connect --path </path/to/your/hudi_table/> 
 
# Run deduplication repair for a specific partition 
repair deduplicate --duplicatedPartitionPath "2022/01/15"



TIP
When performing deduplication, the process can be resource intensive, due to a full read
of the table partition and the inner-join operation. You can use the --
sparkProperties argument of the deduplication repair command to specify Spark-
related configurations to tune operation performance.

Changing table types
Hudi’s flexibility allows you to change table types between Copy-on-Write
(COW) and Merge-on-Read (MOR) based on evolving workload patterns
(Figure 9-4). As your application requirements evolve, you may need to
switch between these table types to optimize for different access patterns.





Figure 9-4. Hudi CLI change table type

Changing from COW to MOR

When your application requires more efficient writes, you might want to
convert a COW table to an MOR table. This change is straightforward and
can be accomplished with a simple command:

connect --path </path/to/your/hudi_table/> 
 
table change-table-type MOR

This command modifies the hoodie.table.type property in the
table’s hoodie.properties file to MERGE_ON_READ.

Changing from MOR to COW

When read performance and compatibility with downstream engines
become more important than write efficiency, you may want to convert an
MOR table to a COW table. This conversion requires special attention
because MOR tables have log files that need to be compacted:

connect --path </path/to/your/hudi_table/> 
 
table change-table-type COW

By default, changing to COW will:

Execute all pending compactions.

Perform a full compaction if any log files remain.

This ensures that all data in log files is properly merged into base files
before the conversion, preventing data loss.



TIP
When converting from MOR to COW, the process can be resource intensive, due to a
full compaction to be running on the whole table. There are parameters available, such
as --parallelism and --sparkMemory, in the change-table-type
command to tune the Spark job accordingly.

Upgrading and downgrading table versions
As Hudi evolves, new table formats and features are introduced that may
require version upgrades. You can use the Hudi CLI to safely upgrade table
versions while maintaining backward compatibility (Figure 9-5).

Understanding table versions

Hudi maintains a versioning system for tables, where each table’s version is
stored in the hoodie.table.version property in the
.hoodie/hoodie.properties file. Different Hudi release versions support
different table versions, and tables may need to be upgraded or downgraded
when switching between Hudi library versions.

Table 9-1 shows the correspondence between Hudi table versions and Hudi
release versions.



Table 9-1. Hudi table versions and their
corresponding release versions

Hudi table version Hudi release version(s)

9 1.1

8 1.0

6 0.14–0.15

5 0.12–0.13

4 0.11

3 0.10

2 0.9

1 0.6–0.8

0 0.5 and below

Upgrading a table version

The Hudi CLI provides the ability to manually upgrade a Hudi table
version. This process modifies the hoodie.properties file with the required
configuration values and adds properties that are required by the target
version.

To upgrade a Hudi table through the CLI:

connect --path <table_path> 
upgrade table --toVersion <target_version>

If you don’t specify a target version, the command upgrade table will
use the latest table version corresponding to the library release version.



Figure 9-5. Hudi CLI upgrade and downgrade

Downgrading a table version



When you need to use an older version of the Hudi library, you must first
downgrade the table version using the newer version of the Hudi CLI
before switching libraries. This process modifies the hoodie.properties file
with the required configuration values and removes properties that aren’t
compatible with the target version.

To downgrade a Hudi table through the CLI, specify the target Hudi table
version as follows:

connect --path <table_path> 
downgrade table --toVersion <target_version>

For example, to downgrade a table from version 6 to 2, you would run:

downgrade table --toVersion 2 --sparkMaster local[2]

TIP
It’s important to note that table upgrades are automatically handled by the Hudi write
client in different deployment modes, such as Hudi Streamer, after upgrading the Hudi
library. This automatic upgrade is the recommended approach in general, rather than
using the manual upgrade CLI command, because a table version upgrade may
require writer configurations as input to derive corresponding table properties. You can
only manually downgrade a table using the CLI.

SMOOTH UPGRADE TO HUDI 1.0
Hudi 1.0 is a milestone release that significantly advances the platform’s feature set and
architectural robustness. A key change in this release is an update to the table format.
For users currently running Hudi 0.x versions, a smooth migration path is essential to
ensure that production pipelines continue to operate without major interruptions.

To facilitate this, Hudi 1.0 provides a backward-compatible write mechanism, enabling
a phased upgrade. The process involves several steps to update the Hudi artifacts used
by table services, writers, and readers. For detailed, step-by-step instructions, please
refer to the official migration guide in the 1.0 release notes.

https://oreil.ly/jPn7B


Integrating into the Platform
Hudi provides strong standalone value, but its true power comes when it’s
fully integrated with your broader data platform. Connecting Hudi with
complementary tools enables workflows like triggering downstream
processing via post-commit callbacks, implementing monitoring for
pipeline health, and synchronizing metadata across catalogs. These
integrations elevate Hudi from a data management tool to a core component
of your lakehouse architecture. A well-integrated deployment ensures data
consistency across query engines, offers a unified view of data assets, and
supports seamless data flow throughout your organization. This section
explores key integration patterns to help you maximize Hudi’s value while
keeping operations simple and reliable.

Triggering Post-Commit Callbacks
When a data pipeline updates a Hudi table, it rarely exists in isolation.
Consider a common scenario where a data engineering team ingests
customer transaction data into a Hudi table. Once that data is committed,
several downstream systems need to be notified: a search index must be
updated to make the new transactions searchable; a real-time dashboard
needs refreshing to reflect the latest business metrics, such as merchant
performance, transaction volume, and revenue attribution; and an event-
driven workflow must be triggered to process high-value transactions.
Without a proper notification mechanism, teams often resort to scheduled
polling or complex orchestration tools that create tight coupling between
systems.

Hudi’s post-commit callback feature enables real-time event notifications
for write operations, forming the foundation for event-driven data
architectures. This powerful capability allows your data pipeline to trigger
downstream processes immediately after a successful write commit without
relying on scheduled jobs or polling mechanisms.

As shown in Figure 9-6, callback will be invoked by a Hudi writer that
completes a write commit. By configuring callbacks to HTTP endpoints or



message brokers like Kafka or Pulsar, you can build loosely coupled, event-
driven architectures that react to data changes instantly, ensuring that
downstream consumers always have access to the freshest data available.

Figure 9-6. Hudi writer invoking post-commit callback

HTTP endpoints
You can send commit notifications to REST APIs or webhook receivers to
trigger serverless functions, workflow orchestrators, or custom



microservices. This approach makes it easy to integrate Hudi with modern
cloud native architectures by informing other systems as soon as data
becomes available.

The following example demonstrates how to configure an HTTP callback
using Hudi’s Spark writer. This setup notifies a downstream service
whenever a commit is completed, which is ideal for workflows that need to
kick off jobs after fresh data is ingested.

Start by initializing your Spark session and preparing the data you plan to
write to the Hudi table:

// Spark Writer Example (Java) 
SparkSession spark = SparkSession.builder() 
  .appName("Hudi HTTP Callback Example").getOrCreate(); 
 
Dataset<Row> dataFrame = 
spark.read().json("/path/to/input/data");

Next, define the writer configurations, including the table name, record key,
and partition path:

// Configure Hudi options for the writer 
Map<String, String> hudiOptions = new HashMap<>(); 
 
// Table configuration 
hudiOptions.put("hoodie.table.name", "customer_orders"); 
hudiOptions.put("hoodie.datasource.write.recordkey.field", 
"order_id"); 
hudiOptions.put("hoodie.datasource.write.partitionpath.field", 
"order_date"); 
hudiOptions.put("hoodie.datasource.write.operation", "upsert");

Enable the HTTP callback and set the target URL along with any required
headers or authentication. This ensures that your downstream service
receives a notification after each commit:

// HTTP Callback configuration 
hudiOptions.put("hoodie.write.commit.callback.on", "true"); 
hudiOptions.put("hoodie.write.commit.callback.class.name", 
  "org.apache.hudi.callback.impl.HoodieWriteCommitHttpCallback"); 



hudiOptions.put("hoodie.write.commit.callback.http.url", 
  "https://order-processing.example.com/api/data-ready"); 
hudiOptions.put("hoodie.write.commit.callback.http.timeout.second
s", "5"); 
hudiOptions.put("hoodie.write.commit.callback.http.api.key", 
  "secret_api_key_123"); 
hudiOptions.put("hoodie.write.commit.callback.http.custom.headers
", 
  "X-Source:hudi-lakehouse;X-Table:customer_orders");

Finally, run the write operation with your configured options. Once the
commit completes, the HTTP callback will automatically fire:

// Apply configuration to your Hudi write 
dataFrame.write() 
  .format("org.apache.hudi") 
  .options(hudiOptions) 
  .mode("append") 
  .save("/path/to/hudi/customer_orders");

Kafka endpoints
You can push commit events to Kafka topics to create an event stream that
can be consumed by multiple downstream systems. This enables parallel
processing workflows and decoupled architectures where different
applications can react to new data independently.

Start by initializing your Spark session and preparing the data you plan to
write to the Hudi table:

// Spark Writer Example (Java) with Kafka Callback 
SparkSession spark = SparkSession.builder() 
  .appName("Hudi Kafka Callback Example").getOrCreate(); 
 
Dataset<Row> dataFrame = 
spark.read().parquet("/path/to/input/data");

Next, define the writer configurations, including the table name, record key,
and partition path:

// Configure Hudi options for the writer 
Map<String, String> hudiOptions = new HashMap<>(); 



 
// Table configuration 
hudiOptions.put("hoodie.table.name", "product_inventory"); 
hudiOptions.put("hoodie.datasource.write.recordkey.field", 
"product_id"); 
hudiOptions.put("hoodie.datasource.write.partitionpath.field", 
"category"); 
hudiOptions.put("hoodie.datasource.write.operation", 
"bulk_insert");

Enable the HTTP callback and set the relevant Kafka-related properties:

// Enable callback with Kafka implementation 
hudiOptions.put("hoodie.write.commit.callback.on", "true"); 
hudiOptions.put("hoodie.write.commit.callback.class.name", 
  
"org.apache.hudi.callback.impl.HoodieWriteCommitKafkaCallback"); 
 
// Kafka specific configuration 
hudiOptions.put("hoodie.write.commit.callback.kafka.bootstrap.ser
vers", 
  "kafka1:9092,kafka2:9092"); 
hudiOptions.put("hoodie.write.commit.callback.kafka.topic",  
  "inventory-updates"); 
// Using single partition ensures strict ordering 
hudiOptions.put("hoodie.write.commit.callback.kafka.partition", 
"0"); 
// Ensure durability 
hudiOptions.put("hoodie.write.commit.callback.kafka.acks", 
"all"); 
// Retry configuration 
hudiOptions.put("hoodie.write.commit.callback.kafka.retries", 
"3");

Finally, run the write operation with your configured options. Once the
commit completes, the HTTP callback will automatically fire:

// Apply configuration to your Hudi write 
dataFrame.write() 
  .format("org.apache.hudi") 
  .options(hudiOptions) 
  .mode(SaveMode.Append) 
  .save("/path/to/hudi/product_inventory");



Pulsar endpoints
Similar to the Kafka integration, you can invoke Pulsar endpoints through
post-commit callbacks by simply configuring the appropriate Pulsar-
specific parameters for your Hudi writer.

Begin by initializing the Spark session and loading the data you want to
ingest into Hudi:

// Spark Writer Example (Java) with Pulsar Callback 
SparkSession spark = SparkSession.builder() 
  .appName("Hudi Pulsar Callback Example").getOrCreate(); 
 
Dataset<Row> dataFrame = 
spark.read().json("/path/to/input/data");

Set the relevant writer configurations, including the table name, record key,
partition path, and precombine field (used for upserts):

// Configure Hudi options for the writer 
Map<String, String> hudiOptions = new HashMap<>(); 
 
// Table configuration 
hudiOptions.put("hoodie.table.name", "financial_transactions"); 
hudiOptions.put("hoodie.datasource.write.recordkey.field", 
"txn_id"); 
hudiOptions.put("hoodie.datasource.write.partitionpath.field", 
"txn_date"); 
hudiOptions.put("hoodie.datasource.write.precombine.field", 
"txn_ts"); 
hudiOptions.put("hoodie.datasource.write.operation", "upsert");

To activate the callback, set the callback.on flag to true and specify
the Pulsar callback implementation class:

// Enable Pulsar callback 
hudiOptions.put("hoodie.write.commit.callback.on", "true"); 
hudiOptions.put("hoodie.write.commit.callback.class.name", 
  
"org.apache.hudi.callback.impl.HoodieWriteCommitPulsarCallback");



Now configure the Pulsar broker URL, topic, and other producer settings.
These options control how the callback publishes commit messages to
Pulsar:

// Pulsar specific configuration 
hudiOptions.put("hoodie.write.commit.callback.pulsar.broker.servi
ce.url", 
  "pulsar://pulsar-broker:6650"); 
hudiOptions.put("hoodie.write.commit.callback.pulsar.topic", 
  "persistent://finance/transactions/hudi-commits"); 
hudiOptions.put("hoodie.write.commit.callback.pulsar.producer.rou
te-mode", 
  "RoundRobinPartition"); 
hudiOptions.put( 
    "hoodie.write.commit.callback.pulsar.producer.pending-queue-
size", "2000"); 
hudiOptions.put("hoodie.write.commit.callback.pulsar.operation-
timeout", "45s"); 
hudiOptions.put("hoodie.write.commit.callback.pulsar.connection-
timeout", "15s");

Finally, run the write operation with all options applied. The Pulsar callback
will automatically publish a message to the specified topic when the
commit completes:

// Apply configuration to your Hudi write 
dataFrame.write() 
  .format("org.apache.hudi") 
  .options(hudiOptions) 
  .mode(SaveMode.Append) 
  .save("/path/to/hudi/financial_transactions");

TIP
While HTTP, Kafka, and Pulsar are supported out of the box, you can extend the
org.apache.hudi.callback.HoodieWrite Com mit Callback interface to
create your own implementation, offering unlimited flexibility in how commit events
are processed and distributed.

Wiring Up Monitoring Systems



Running a data pipeline without monitoring metrics is like driving at night
without headlights; you might get where you’re going, but you’ll miss
warning signs along the way. Monitoring provides real-time visibility into
table health, performance bottlenecks, and anomalies before they escalate
into failures. For Hudi deployments, proper monitoring becomes the
difference between proactive management and reactive troubleshooting.
When write commits slow down, storage grows unexpectedly, or query
performance degrades, metrics are the early warning system, helping teams
diagnose and resolve issues before users are affected. By integrating Hudi
with systems like Prometheus, AWS CloudWatch, or Datadog, you gain
clear insight into the state of your data lakehouse, making operations and
server status transparent and observable so that data pipelines can be
continuously optimized and reliably maintained (Figure 9-7).

Figure 9-7. Hudi writer sending metrics to the monitoring dashboard

Enabling metrics in Hudi



Hudi provides a flexible metrics framework that can integrate with various
monitoring backends. To enable metrics collection in Hudi, you need to set
the following basic configuration:

hoodie.metrics.on=true 
hoodie.metrics.reporter.type=<REPORTER_TYPE>

where <REPORTER_TYPE> can be one of the supported reporters: JMX,
GRAPHITE, DATADOG, PROMETHEUS_PUSHGATEWAY, CLOUDWATCH,
or a custom implementation.

Available metrics
Hudi exposes comprehensive metrics that provide insights into various
operations:

Commit performance

Duration of commits, rollbacks, and other timeline operations

Data management

Statistics on files created, updated, or deleted

Record processing

Counts of records inserted, updated, or deleted

Resource utilization

Time taken for scanning, merging, and other operations

These metrics can help you track the health and performance of your Hudi
tables and identify potential issues before they become critical problems.

Integration examples
Let’s review some examples for integrating with monitoring systems.

Prometheus and Grafana



Prometheus is a popular open source monitoring system that collects and
stores metrics from various services. Hudi supports Prometheus integration
through the Pushgateway, which acts as an intermediary between Hudi jobs
and the Prometheus server.

To enable this integration, you’ll start by configuring Hudi to push metrics
to the Prometheus Pushgateway. In your job configuration, set the following
options:

hoodie.metrics.on=true 
hoodie.metrics.reporter.type=PROMETHEUS_PUSHGATEWAY 
hoodie.metrics.pushgateway.host=prometheus-pushgateway 
hoodie.metrics.pushgateway.port=9091 
# Optional: Configure job name 
hoodie.metrics.pushgateway.job.name=hudi-metrics 
# Optional: Keep metrics after job completion 
hoodie.metrics.pushgateway.delete.on.shutdown=false

Next, update your Prometheus configuration to scrape metrics from the
Pushgateway. In your prometheus.yml, add a scrape job similar to this:

scrape_configs: 
  - job_name: 'pushgateway' 
    honor_labels: true 
    static_configs: 
      - targets: ['prometheus-pushgateway:9091']

Once Prometheus is collecting metrics, you can visualize them using
Grafana, a popular open source companion to Prometheus. Grafana lets you
build real-time dashboards to track metrics such as commit duration trends,
record processing rates, and file I/O activity.

Although we won’t cover dashboard creation in detail here, Grafana’s
documentation provides guidance on connecting to Prometheus and setting
up your first dashboard.

Datadog

Datadog is a popular cloud-based monitoring and analytics platform that
helps teams track infrastructure, application performance, and logs in one

https://prometheus.io/
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place. Hudi offers native integration with Datadog, allowing you to send
operational metrics directly to your Datadog account for visualization and
alerting.

To enable Datadog integration, add the following configuration to your
Hudi job:

hoodie.metrics.on=true 
hoodie.metrics.reporter.type=DATADOG 
# api.site can be either US or EU based on your Datadog instance 
hoodie.metrics.datadog.api.site=US 
hoodie.metrics.datadog.api.key=<YOUR_DATADOG_API_KEY> 
hoodie.metrics.datadog.metric.prefix=hudi

Once configured, metrics will appear in your Datadog account, where you
can create dashboards, set up alerts, and integrate Hudi insights with the
rest of your infrastructure monitoring. For details on dashboard creation,
refer to Datadog’s documentation.

AWS CloudWatch

AWS CloudWatch is Amazon’s native monitoring and observability service,
offering real-time insights into resource utilization, application
performance, and operational health. Hudi supports CloudWatch integration
out of the box, making it easy to monitor Hudi jobs alongside your other
AWS services.

To enable CloudWatch integration, use the following configuration:

hoodie.metrics.on=true 
hoodie.metrics.reporter.type=CLOUDWATCH 
# Optional: Configure AWS credentials if not using instance 
profiles 
hoodie.aws.access.key=<YOUR_ACCESS_KEY> 
hoodie.aws.secret.key=<YOUR_SECRET_KEY>

Building custom metrics dashboards
When building dashboards for Hudi monitoring, consider including these
key metrics:

https://docs.datadoghq.com/


Write performance

– <table_name>.commit.duration: Time taken for
commits

– <table_name>.totalRecordsWritten: Number
of records processed

– <table_name>.totalFilesInsert and
<table_name>.totalFilesUpdate: File
operations

Data freshness

– <table_name>.commitFreshnessInMs: Latency
between data event time and commit time

– <table_name>.commitLatencyInMs: End-to-end
processing latency

Storage efficiency

– <table_name>.totalBytesWritten: Data
volume written

– File counts by partition

– Compaction metrics

Best practices for monitoring
To fully make use of the monitoring system, consider the following best
practices:

Set meaningful thresholds for alerts based on your workload
patterns.

Monitor trends over time rather than absolute values.



Correlate Hudi metrics with infrastructure metrics (CPU, memory,
disk I/O).

Create dedicated dashboards for different personas (operators,
developers, data engineers).

Include business context by relating technical metrics to data
SLAs.

TIP
For metrics monitoring, please consult the documentation page outlining Hudi’s
supported metrics systems. If your preferred metrics system isn’t listed among the
supported options, you can create a custom metrics integration by extending the
org.apache.hudi.metrics.custom.CustomizableMetricsReporter
class.

By properly integrating Hudi with your monitoring systems, you gain
visibility into the health and performance of your data lakehouse, enabling
proactive management and optimization of your data pipelines.

Syncing with Catalogs
In the world of data management, a lakehouse without a catalog is like a
library without an index—vast and valuable, but difficult to navigate
efficiently. Data catalogs bridge the gap between raw data storage and
usability, providing the metadata layer that allows users to discover,
understand, and query data assets without needing to know their physical
location or structure. While traditional data warehouses include this by
default, data lakehouses require explicit integration with catalog services.
Hudi’s ability to sync table metadata with popular catalogs such as Apache
Hive Metastore, AWS Glue, and Google BigQuery ensures that tables
remain visible and accessible across the analytics ecosystem. This
synchronization enables seamless querying through familiar SQL engines
like Presto, Trino, Spark SQL, and Athena, combining the governance and
structure of a data warehouse with the flexibility and cost-efficiency of a

https://oreil.ly/FcjnQ


data lakehouse. By automating metadata management, organizations
maintain a single source of truth, empowering users to access and analyze
data independently, without relying on engineering teams.

Catalog synchronization
Catalog synchronization is the process by which Hudi keeps external
metadata repositories (data catalogs) updated with the latest information
about tables stored in the data lakehouse. This synchronization creates a
bridge between physical data storage and the metadata required for
discovery and querying.

A data catalog entry for a Hudi table typically contains:

Table schema information (column names, data types)

Partition structure information and list of available partitions

Table properties and statistics

Table location information

Table format and version metadata

Catalog synchronization in Hudi is implemented as a separate process to be
executed after successful write commits happen (Figure 9-8). Here’s how
the process works:

1. A write operation (insert, upsert, delete, etc.) is performed on a
Hudi table.

2. After the operation successfully commits, Hudi examines the
commit metadata.

3. If sync is enabled, Hudi triggers the configured sync tool(s).

4. The sync tool extracts the latest metadata from the Hudi table,
including:

– Current schema



– Partition information

– Table properties

5. The sync tool connects to the target data catalog and updates the
corresponding table entry.





Figure 9-8. Hudi writer running metasync process with catalogs

This process ensures that the metadata in the catalog remains consistent
with the actual data in the Hudi table.

Metadata versioning
Each time a commit occurs with meaningful metadata changes, a new
version of the table entry may be created in the catalog, depending on how
the catalog handles updates. These changes can include:

Schema evolution (added, removed, or modified columns)

Newly added or deleted partitions

Changes to table properties or statistics

Some catalogs, like AWS Glue, maintain versioned table entries. To avoid
creating excessive versions, Hudi provides conditional sync options that
only trigger synchronization when there are actual metadata changes
(schema or partition changes), rather than after every commit.

For efficiency, especially with catalogs that track versions (like AWS Glue),
Hudi provides a conditional sync feature. When enabled with:

hoodie.datasource.meta_sync.condition.sync=true

Hudi will only sync to the catalog when there are actual metadata changes,
such as:

Schema evolution (new or modified columns)

New partitions added

Partitions deleted

Other significant metadata changes

This prevents unnecessary catalog updates and reduces the proliferation of
catalog versions.



Supported catalog integrations
Hudi supports synchronization with several popular catalog services:

Hive Metastore

The most widely used catalog for data lakehouse implementations, Hive
Metastore stores metadata about tables and partitions. Hudi’s integration
with Hive Metastore makes tables queryable through Hive, Presto,
Trino, and other SQL engines that can connect to the Hive Metastore.
For detailed configuration options, refer to the Syncing with Hive
Metastore documentation.

AWS Glue Data Catalog

AWS Glue Data Catalog is AWS’s managed metadata repository,
compatible with the Hive Metastore interface. Hudi provides a
dedicated sync tool that can directly update the Glue Data Catalog,
making Hudi tables available for querying through AWS Athena,
Amazon EMR, and other AWS analytics services. For AWS Glue–
specific configurations, see the Syncing with AWS Glue documentation.

Google BigQuery

Hudi tables can be synced to Google BigQuery as external tables. This
integration enables you to query Hudi data using BigQuery’s powerful
SQL engine without moving the data from its original storage location.
For BigQuery sync details, refer to the BigQuery integration
documentation.

DataHub

DataHub is an open source metadata platform for data discovery and
governance. Hudi can sync table metadata to DataHub, enhancing
discoverability and providing rich metadata context for Hudi tables. For
DataHub sync options, see the Syncing with DataHub documentation.

Apache XTable

https://oreil.ly/_fwPo
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Apache XTable provides cross-table omnidirectional interoperation
between lakehouse table formats. Let’s say you have a Hudi table. You
can use XTable to translate its metadata to Apache Iceberg’s metadata
format such that the same table can be read as an Iceberg table while
keeping the original Hudi table as is. This conversion can be done in all
directions between the supported formats (Hudi, Iceberg, and Delta
Lake). This would allow you to integrate with more catalogs, such as
Snowflake Polaris, for example, after converting Hudi to Iceberg. For
XTable sync options, see the XTable sync documentation.

Example: Hive Metastore sync with HMS mode
One of the most common catalog integrations is with the Hive Metastore,
which serves as a central metadata repository for many SQL engines. Hudi
supports syncing to Hive in multiple modes; here, we use HMS mode (Hive
Metastore Service), which connects directly to the metastore service via
Thrift.

The following Spark writer example (Scala) demonstrates how to enable
Hive sync when writing a Hudi table using the Spark DataSource API. In
addition to standard Hudi write options, notice the Hive-specific
configurations that control the sync behavior:

// Write to Hudi with Hive sync enabled 
dataFrame.write.format("hudi") 
  // Essential Hudi configs 
  .option("hoodie.datasource.write.recordkey.field", "recordKey") 
  .option("hoodie.datasource.write.partitionpath.field", 
"partitionPath") 
   
  // Hive sync configurations 
  .option("hoodie.datasource.meta.sync.enable", "true") 
  .option("hoodie.datasource.hive_sync.mode", "hms") 
  .option("hoodie.datasource.hive_sync.metastore.uris",  
    "thrift://hive-metastore:9083") 
  .option("hoodie.datasource.hive_sync.database", "my_database") 
  .option("hoodie.datasource.hive_sync.table", "my_table") 
  .option("hoodie.datasource.hive_sync.partition_fields", 
"partition_field") 
  .save("/path/to/hudi/table")

https://xtable.apache.org/
https://oreil.ly/LeQSN


Let’s break down a few of the key options:

hoodie.datasource.meta.sync.enable

This flag must be set to true to activate metadata syncing after each
write.

hoodie.datasource.hive_sync.mode

By specifying hms, you’re telling Hudi to sync directly with the Hive
Metastore service. This is useful when you have a metastore running
independently of HiveServer2.

hoodie.datasource.hive_sync.metastore.uris

This points to your Hive Metastore’s Thrift URI. This allows the sync
client to communicate directly with the metastore.

hoodie.datasource.hive_sync.database and
hoodie.datasource.hive_sync.table

These define where the Hudi table appears in Hive, which is essential
for ensuring that your data is queryable via engines like Hive, Presto, or
Trino.

hoodie.datasource.hive_sync.partition_fields

This lists the partition keys so that the sync process correctly registers
partitioned data in Hive.

This minimal configuration is often sufficient to get started, but additional
options (e.g., handling of schema evolution or case sensitivity) may be
needed depending on your production setup. For the full range of available
configs and deeper examples, refer to the Hive Sync documentation.

Using multiple catalog syncs
In many enterprise environments, the data platforms are heterogeneous.
Different teams or applications rely on different catalog services to query

https://oreil.ly/_fwPo


the same datasets. For example, one team might use the Hive Metastore for
on-premises analytics with Hive or Trino, while another uses AWS Glue
Data Catalog to access the same data via Athena. In these cases, it’s critical
to keep metadata consistent across catalogs to ensure that everyone sees the
same version of the table, regardless of which tool they’re using.

Hudi supports synchronizing a table with multiple catalogs simultaneously
by specifying multiple sync tool classes. This ensures that after each write,
all connected catalog systems stay up-to-date automatically.

Here’s a simple configuration example that syncs a Hudi table with both the
Hive Metastore and AWS Glue Data Catalog after each commit:

hoodie.meta.sync.client.tool.class=\ 
org.apache.hudi.hive.HiveSyncTool,\ 
org.apache.hudi.aws.sync.AwsGlueCatalogSyncTool

With this setup, Hudi will first sync with Hive Metastore, and then with
Glue, maintaining consistent table definitions across both systems.

Performance Tuning
Even a well-designed data lakehouse can encounter performance
bottlenecks. In Hudi, performance tuning is the key to transforming a data
platform from merely functional to truly high performing. By optimizing
key configurations, you can significantly reduce processing times, ensure
predictable SLAs, and handle larger data volumes more efficiently.

Optimal performance requires careful tuning because every production
environment is unique. The ideal configuration depends on your specific
use case, data characteristics (volume, velocity, update frequency), and the
trade-offs between conflicting goals, such as write speed versus query
latency.

This section serves as a compendium of the most impactful tuning strategies
discussed throughout this book. We will recap fundamental principles and
specific configurations for write, read, and table service operations, and



provide cross-references to the chapters where these concepts are explained
in greater detail.

Storage Layout Tuning
Before diving into specific operations, it’s crucial to understand the
foundational tuning options on Hudi table’s storage layout that have the
broadest impact on the table performance.

Table type selection
The choice between COW and MOR is the most fundamental performance
decision you will make. As detailed in Chapter 2, these table types offer
different trade-offs between write and read performance.

The COW table format is optimized for read performance. Updates require
rewriting entire base files, which can lead to higher write amplification.
This type is ideal for read-heavy workloads with infrequent updates. On the
other hand, the MOR table format is optimized for write performance.
Updates are appended to lightweight log files, resulting in minimal write
amplification and faster writes. However, snapshot queries need to merge
base files and log files on the fly, which increases query latency. This type
is best for write-intensive or streaming workloads with frequent updates.

The table format can be configured by setting the following config during
table creation:

hoodie.table.type=COPY_ON_WRITE // or MERGE_ON_READ

It’s a best practice to choose your table type based on your primary
workload pattern. In case your business requirements or workload patterns
change, you can use Hudi CLI to change the table type as shown in
“Changing table types”.

File sizing
Hudi performs best when data is stored in optimally sized files (typically
128 MB to 1 GB). A large number of small files—the small-file problem—



can severely degrade the overall read and write performance because of the
overhead in opening, closing, and reading metadata for each file.

As discussed in Chapter 3, Hudi provides a file-sizing mechanism to
automatically manage file sizes during writes. Important configs include:

hoodie.parquet.max.file.size

Sets the upper limit for base file sizes

hoodie.parquet.small.file.limit

Defines a threshold below which Hudi will pad new inserts into existing
small files instead of creating new ones

While these inline controls are effective, you can also leverage the
Clustering table service (see Chapter 6) for more robust, asynchronous
optimization of file sizes over the long term.

Partitioning
Physical partitioning is a traditional and effective way of improving table
performance. By dividing a table into partitions based on column values
(e.g., date, region), you enable query engines to perform partition pruning,
skipping irrelevant data and drastically reducing scan times.

As introduced in Chapter 2, the key is to choose partition columns that align
with the most common WHERE clause predicates in your queries. You
should balance the number of partitions to avoid creating too many small,
sparsely populated ones, which can lead back to the small-file problem.

When partitioning is unsuitable for some tables or doesn’t match common
access patterns, you can build expression indexes, as introduced in
Chapter 5, for the Hudi table to flexibly optimize for a diverse range of
query predicates.

Write Performance Tuning



Optimizing write performance is crucial for meeting ingestion SLAs and
efficiently handling data updates. The key areas to focus on are parallelism,
indexing, and bulk insert optimizations.

Tuning parallelism
Parallelism is a major lever for balancing throughput, resource use, and
output file sizes. Too little parallelism can bottleneck your job; too much
can overwhelm your cluster or produce too many small files. In Spark, Hudi
write operations include shuffle stages, so tuning shuffle parallelism is
critical. Important configs include:

hoodie.insert.shuffle.parallelism

hoodie.upsert.shuffle.parallelism

hoodie.bulkinsert.shuffle.parallelism

A good starting point is to set parallelism based on data size; for example,
around input_data_size / 500MB. Understanding how your Spark
tasks, executor cores, and parallelism settings interact is key to efficient
execution.

For Flink, parallelism tuning involves adjusting task slots
(taskmanager.numberOfTaskSlots) and setting parallelism for
different stages of the Hudi pipeline, such as:

write.tasks (main write)

compaction.tasks (background compaction)

read.tasks (index bootstrapping, if used)

Getting parallelism right means faster jobs, better resource usage, and well-
sized output files.

Tuning indexes
Choosing a suitable Hudi writer index type is critical for update and delete
operations. A writer index maps incoming record keys to their physical file



location, avoiding costly full table scans. As detailed in Chapter 5, Hudi
offers several writer index types, each with different characteristics:

Record

General purpose, high-performance indexing that works well for tables
at all sizes and all workload patterns

Bucket

Fastest option for update-heavy write workloads, suitable for tables of
all sizes

Simple

Applicable for random update/delete patterns, not suitable for large-
scale tables

Bloom

Suitable for skewed update/delete patterns, not suitable for random
update/delete patterns

Bulk insert optimizations
For initial data loading or append-only pipelines, the bulk_insert
operation offers the best performance. As explained in Chapter 3, it
bypasses the indexing and auto file sizing steps, writing data at speeds close
to that of plain Apache Parquet.

Bulk insert and sort mode can be configured as follows:

hoodie.datasource.write.operation=bulk_insert 
hoodie.bulkinsert.sort.mode=PARTITION_PATH_REPARTITION

To further boost performance, use a lightweight compression codec (e.g.,
Snappy): hoodie.parquet.compression.codec=snappy.

Read Performance Tuning



Minimizing query latency is the primary goal for read-heavy workloads.
Hudi provides powerful features to accelerate queries.

Data skipping with the metadata table
One of the most effective ways to speed up queries is data skipping. As
explained in Chapter 5, Hudi’s metadata table can store column-level
statistics (min/max values, null counts) aggregated at file and partition level
(column stats and partition stats indexes). When a query with relevant
predicates is executed, Hudi uses these statistics to skip reading partitions
and files that could not possibly contain matching data.

Important configs on the read side include:

hoodie.enable.data.skipping=true

hoodie.metadata.enable=true

By default, since Hudi 1.0, metadata table is enabled and the column stats
and partition stats indexes are also enabled. This can lead to order-of-
magnitude performance improvements for selective queries on large tables.

Query types for MOR tables
For MOR tables, you can choose between two query types to balance data
freshness and performance, as discussed in Chapter 4:

Snapshot query (default)

Provides the most up-to-date view of the data by merging base files and
log files on the fly. This ensures data freshness but incurs read-time
overhead.

Read-optimized query

Provides maximum query speed by reading only the columnar base files
and ignoring the log files, hence no merging on the fly. The returned
records may be stale, but the query can achieve faster performance.



Query type can be set using the following config:

hoodie.datasource.query.type=snapshot // or read_optimized

NOTE
The read optimized query type is not applicable to COW tables because COW tables
don’t have log files to merge with base files; the snapshot queries on a COW table is
already optimized.

Table Services Tuning
As detailed in Chapter 6, Hudi supports running table services to maintain
the long-term health and performance of your tables.

Compaction
Compaction is a critical service for MOR tables. It merges row-based log
files with columnar base files, preventing read performance from degrading
over time. It is a best practice to run compaction asynchronously, as this
separates the resource-intensive compaction work from your primary
ingestion pipeline, reducing write latency. You should also tune the trigger
strategy (e.g.,
hoodie.compaction.trigger.strategy=NUM_COMMITS) and
planning strategy (hoodie.compaction.strategy) to match your
workload.

Clustering
Clustering rewrites data to optimize the physical layout, typically by sorting
records based on frequently filtered columns and consolidating small files.
Like compaction, it is best to run clustering asynchronously to avoid
impacting write performance. You should also use a planning strategy
(hoodie.clustering.plan.strategy.class) to target specific
file groups for optimization, such as those with many small files.

Cleaning



The cleaning service reclaims storage space by removing old, unused file
versions created by updates and table services. You should configure a
cleaner policy (hoodie.cleaner.policy) that aligns with your
organization’s data retention and time travel requirements. The
KEEP_LATEST_COMMITS policy is a common choice, ensuring that long-
running queries do not fail while old file versions are being cleaned.

Summary
In this chapter, we explored the core components needed to run Hudi in
production. We looked at how the CLI simplifies administrative tasks, how
savepoint and restore safeguard your data, and how integration tools like
post-commit callbacks and catalog synchronization help Hudi fit smoothly
into your broader data platform. We also recapped performance tuning tips
from previous chapters to help you get the most out of your setup.

These foundational practices are essential for any production Hudi
deployment. But in real-world scenarios, success often comes from
combining these building blocks into tailored solutions that meet specific
business needs. In Chapter 10, we’ll take things a step further with end-to-
end examples that show Hudi in action across different industries. You’ll
see how organizations have solved unique data challenges by weaving Hudi
into their data architectures, and you’ll get some practical blueprints you
can adapt to your own production environment.



Chapter 10. Building an End-to-
End Lakehouse Solution

Having established the operational foundations to run a production
lakehouse, the stage is set for us to build a comprehensive, integrated
solution atop Hudi. This chapter will demonstrate how to construct an end-
to-end production data lakehouse architecture with Apache Hudi as its
foundation. Rather than examining isolated components, we’ll follow a
single dataset through its entire lifecycle, from initial ingestion to analytical
insights and AI-driven applications.

Modern data architectures require seamless data integration from upstream
sources, unified support for both streaming and batch processing, reliable
handling of diverse data types, and the ability to serve multiple downstream
consumers with varying requirements. The magic isn’t about having perfect
data, but about nimbly stitching together key features to deliver novel
insights despite real-world problems like data silos and operational
challenges. You have to “make data easy” for your organization and
empower your teams to build on top of it.

This chapter will explain how to tackle these challenges in style by
combining multiple processing frameworks on top of a unified data
lakehouse. Hudi’s versatility supports this level of integration while making
it easy to do things “the right way,” with respect to data consistency,
performance, and governance.

In this chapter, we’ll construct a complete data platform that progressively
transforms raw data into business value. You’ll learn how to do the
following:

Process streaming changes with Apache Flink and Hudi Streamer,
handling complex update patterns while maintaining transactional
guarantees.



Ingest high-volume log data through the Hudi Kafka Connect sink,
efficiently capturing append-only event streams.

Transform and extract business insights with SQL capabilities,
from incremental processing to interactive analytics.

Leverage data for AI applications, creating contextual knowledge
bases for large language models (LLMs) to provide business
insights.

NOTE
The Hudi Streamer tool, which we discussed in Chapter 8, can also be used for the
ingestion functionality across all layers in the architecture. This chapter additionally
showcases Flink and Kafka Connect to illustrate the rich diversity of tools in Hudi’s
toolchain.

You’ll see how Hudi’s streaming ingestion, table storage formats,
incremental processing, and query optimization enable a clean data
architecture that efficiently serves multiple stakeholders while minimizing
data sprawl and processing overhead.

Architecture Overview
In this chapter, we embark on a practical journey with a fictional company,
RetailMax Corp., demonstrating how to build a data platform, from
ingestion to applied AI for deriving business insights. By working through
this scenario, we’ll see how Hudi’s features address the real-world problems
that led you to open this book.

Figure 10-1 depicts our architecture, which is based on the Medallion
architecture. By the end of this chapter, you’ll have a blueprint for
implementing your own end-to-end data lakehouse with Hudi. The patterns
and techniques demonstrated here can be adapted to diverse use cases



across industries, providing a flexible foundation for your organization’s
data strategy.





Figure 10-1. Medallion-based architecture using Hudi tools, components, and integrations

RetailMax Corp: A Real-World Lakehouse
Scenario
RetailMax Corp. manages a thriving business with a significant online
presence—both an ecommerce site and a mobile app. Current strategic
objectives are centered on enhancing customer experience, optimizing
operations, and driving revenue growth. Some of the key initiatives in
progress include:

360-degree customer view

Consolidating customer data from all touchpoints (online interactions,
purchases, loyalty programs, and in-store transactions) to understand
customer behavior and preferences comprehensively.

Real-time personalization

Delivering personalized product recommendations, offers, and content
to users on the RetailMax website and mobile app.

Inventory and supply chain optimization

Maintaining accurate, real-time visibility into inventory levels across all
channels to prevent stockouts, reduce overstocking, and improve
fulfillment efficiency.

Fraud detection

Identifying and preventing fraudulent transactions in real time.

Self-service analytics

Empowering business users (marketing, sales, operations) with the
ability to perform ad hoc analysis and generate reports without heavy
reliance on IT.



RetailMax has a ton of data and it’s all over the place.

Similar to the airline company we met in Chapter 8, RetailMax has a data
silo problem. It has several important relational tables that are stored in its
“good ‘ol” PostgreSQL database. These include:

customer_master

Contains customer profiles, demographic information, and contact
details.

product_catalog

Stores detailed information about products, including SKUs,
descriptions, categories, and pricing.

sales_transactions

Records historical sales data from both online orders and in-store point-
of-sale (POS) systems.

The company also has two Kafka topics that each represent updates to
objects that change frequently and in near real time:

web_clickstreams

A high-volume, append-only stream of real-time user interactions from
the ecommerce website and mobile application. This includes page
views, product detail views, clicks on recommendations, add-to-cart
events, and search queries.

inventory_updates

Real-time events indicating changes in stock levels originating from
warehouse and in-store POS systems. These are crucial for timely
inventory management and can involve frequent updates to specific
product SKUs.



Table 10-1 provides a summary of RetailMax’s data sources and its planned
ingestion into the Hudi-based lakehouse.

Implementing Medallion Architecture with
Hudi
The Medallion architecture is a popular data design pattern for organizing
data in a lakehouse. Data is organized into layers, often referred to as
Bronze, Silver, and Gold, to provide structured and progressive refinement.
The Bronze layer stores raw, immutable data from source systems for

Table 10-1. RetailMax data sources and characteristics

Data source
name

System of
record

Data type/data
model

Ingestion
method

customer_mast
er

PostgreSQL Structured/mutable Change data
capture (CDC)
via
Debezium/Flink

product_catal
og

PostgreSQL Structured/mutable CDC via
Debezium/Flink

sales_transac
tions

PostgreSQL Structured/mutable CDC via
Debezium/Flink

web_clickstre
ams

Apache Kafka Semi-
structured/append-
only

Kafka Connect

inventory_upd
ates

Kafka Semi-
structured/mutable

Kafka Connect
or Flink



auditing and reprocessing. The Silver layer then cleanses, standardizes, and
transforms this data, aiming for a unified and consistent view with schema
enforcement and basic quality checks. Finally, the Gold layer contains
highly refined, aggregated, and denormalized data optimized for business
intelligence, analytics, and machine learning applications. This layered
approach promotes data governance, reusability, and scalability, addressing
the common issue of data lakes devolving into “data swamps.”

Configuring RetailMax’s Hudi Tables
RetailMax will make critical business decisions based on this lakehouse, so
the lakehouse must be highly reliable, which is not an easy goal to achieve.
Event streams and relational databases are two very different kinds of
systems that introduce all kinds of complexity around scale and consistency.
To make sure we start off on the right foot, we need to make some
configuration decisions to ensure that we can make those kinds of
guarantees and feel good about making them.

Record Keys
Every Hudi table needs a reliable way to identify records uniquely. This is
what powers its efficient update and delete capabilities. Think of the record
key (introduced in Chapter 2) as the table’s anchor in all future updates.

Finding the anchor is sometimes straightforward; for instance, in
RetailMax’s Bronze customer table
(hudi_customer_master_bronze), the record key is simply
customer_id. Sometimes it requires more work; for the Bronze sales
table (hudi_sales_transactions_bronze), we could combine
order_id and line_item_id to form a composite record key, which
will give us the granularity to track every transaction. For the Bronze
clickstream table (hudi_web_clickstreams_bronze), we could use
a generated event_id or create a composite of session_id and
event_timestamp, depending on how event tracking is implemented



upstream. If the use case does not inherently provide a suitable unique
record key, users can leave the record key unconfigured and Hudi can
assign an auto-generated key for each record that is highly compressible.

Ordering Field
Sometimes multiple versions of the same record show up, especially in
streaming systems with out-of-order delivery. That’s where the ordering
field (introduced in Chapter 3) comes in. It decides which version “wins.”

An updated_at timestamp is a common choice. It’s straightforward and
makes it easy to reason about deduplication and data freshness. It helps
guard against challenges like stale change records from a different
region/zone making the table state go backward in time or become
incorrect.

Partitioning
Partitioning (introduced in Chapter 2) helps downstream query engines skip
irrelevant data and also makes data easier to manage at scale. But it’s a
balancing act; you want to improve performance without creating too many
small files by accidentally over-partitioning the table. As a general rule of
thumb, you should only employ partitioning for tables that are larger than
250 GB or so.

Choosing the right partitioning strategy involves balancing query patterns,
data distribution, and partition management overhead, but we can start by
partitioning the Bronze sales table
(hudi_sales_transactions_bronze) by order_date (e.g.,
year/month/day) and partitioning the Bronze clickstream table
(hudi_web_clickstreams_bronze) by event_date. This
strategy is a good starting point because it aligns with typical time-series
queries (e.g., analyzing sales by day or web activity over a period) and
helps manage data growth by segmenting it into manageable chronological
units.



Table Types
Finally, there’s the question of table type. As we discussed in Chapter 2,
choosing the right table type will have a major impact on RetailMax’s
lakehouse performance. Because we’ll be creating several Hudi tables, we
should carefully think through which table type makes sense for each.

Merge-on-Read (MOR) is great for high-frequency update scenarios. Writes
are fast, updates are cheap, and compaction can be executed
asynchronously. This will be helpful for streaming-heavy Bronze tables like
hudi_web_clickstreams_bronze and
hudi_inventory_updates_bronze.

Copy-on-Write (COW) is better for read-heavy use cases. Writes can be
more expensive, but reads are fast and convenient. COW is perfect for Gold
tables like hudi_daily_sales_gold where data is already clean and
doesn’t change often, or for Silver tables with infrequent updates.

Table 10-2 outlines the proposed Hudi table designs for RetailMax’s
lakehouse, connecting the conceptual Medallion architecture layers to
concrete Hudi configurations. This blueprint provides a practical reference
for understanding how Hudi is applied across the different stages of data
refinement.



Table 10-2. RetailMax’s lakehouse blueprint

Hudi table
name Source

Record
key(s)

Ordering
field

Parti
strat

hudi_customer
_master_bronz
e

customer_mast

er (Postgres)
customer_id updated_ts count

hudi_sales_tr
ansactions_br
onze

sales_transac
tions

(Postgres)

order_id, line
_item_id

transaction_t
s

dt (Y
MM-

hudi_web_clic
kstreams_bron
ze

web_clickstre

ams (Kafka)
event_id event_ts dt (Y

MM-

hudi_inventor
y_updates_bro
nze

inventory_upd

ates (Kafka)
sku, location_
id

update_ts dt (Y
MM-

hudi_unified_
customer_orde
rs_silver

hudi_sales_tr
ansactions_br

onze, hudi_cus
tomer_master_
bronze

order_id, line
_item_id

last_updated_
ts

order

hudi_sessioni
zed_clickstre
ams_silver

hudi_web_clic
kstreams_bron
ze

session_id session_end_t
s

sessi

hudi_product_
daily_invento
ry_silver

hudi_inventor
y_updates_bro

nze, hudi_prod
uct_catalog_b
ronze

sku, date last_checked_
ts

date

hudi_daily_sa
les_gold

hudi_unified_
customer_orde
rs_silver

date, product_
category, regi
on

aggregation_t
s

year,



Bronze Layer: Ingesting Upstream Data
The Bronze layer will serve as the initial ingestion point for all raw data
into RetailMax’s Hudi-based lakehouse. The primary objective here is to
capture data from diverse upstream sources with high fidelity, preserving
the original structure as much as possible, but also making it easier to do
efficient incremental processing downstream in the Silver and Gold layers.
The primary goals are to capture data accurately from source systems,
maintain historical archives, and enable reprocessing if needed.

In the Bronze layer, Hudi acts as an efficient landing zone for raw data. You
have the option to leverage schema-on-read flexibility, or to ask Hudi to
enforce schemas upon write (Hudi supports schema evolution, which helps
strike a good balance). For streaming sources like Kafka events or CDC
streams, we recommend the MOR table type due to its lower write
amplification and latency, with record index and async compaction ensuring
smooth operations for even the toughest workload patterns. Conversely, for
batch sources with infrequent updates, COW may be a simpler, more cost-
effective choice. Additionally, Hudi can be configured to store enough
version history for the table, to aid with rollback process in case of bad data
errors like an upstream write producing bad record values.

Setting Up Upstream Data Sources

Hudi table
name Source

Record
key(s)

Ordering
field

Parti
strat

hudi_customer
_segments_gol
d

hudi_unified_
customer_orde

rs_silver, hud
i_customer_ma
ster_bronze

customer_id segmentation_
ts

segme



RetailMax’s data ecosystem comprises both transactions that happen inside
a Postgre SQL database and events that live in Kafka topics. Key relational
tables that change frequently and drive business functions (like
customer_master, product_catalog, and
sales_transactions) are the sources of structured operational data.
Changes in these systems need to be captured and propagated to the
lakehouse in near real time. Topics such as web_clickstreams and
inventory_updates carry high-velocity, semi-structured event data
reflecting real-time business activities.

Many companies rely on both event streams and relational databases to
power mission-critical parts of the business. As you might imagine, these
sources require different ingestion mechanisms to efficiently land data into
the Bronze layer.

Let’s start with the transactional data.

Streaming Mutable, Transactional Data with Debezium,
Flink, and Hudi
The challenge is that transactional databases don’t naturally emit event
streams, so we have to reconstruct a timeline of these changes to bring them
onto the same playing field as our Kafka topics. For RetailMax’s
PostgreSQL database, capturing and streaming CDC events is essential for
keeping the lakehouse synchronized with operational systems.

Capturing CDC from PostgreSQL
Debezium is an open source distributed platform for CDC. For RetailMax,
Debezium connectors will be configured to monitor the
sales_transactions, customer_master, and
product_catalog tables in their PostgreSQL database. Debezium
basically just sits next to the database and records everything that changes.
It reads the data base’s transaction logs (write-ahead logs or WALs),
captures row-level changes (inserts, updates, deletes) as they happen, and
produces corresponding event streams.



These events can then be published to Kafka topics, transforming database
changes into a stream of structured messages that can be consumed by
downstream processing engines. This approach ensures that every
modification in the source database is captured, enabling the lakehouse to
maintain a consistent and up-to-date view of the operational data.

Processing CDC events with Flink
Flink, a powerful stream processing framework, is well suited for
consuming and processing the CDC event streams generated by Debezium.
Flink offers low-latency processing, stateful computations, and robust
connectors. RetailMax will use Flink jobs to do the following:

1. Consume CDC events from the Kafka topics populated by
Debezium.

2. Perform light transformations or cleansing if necessary. This might
include mapping Debezium’s event structure to the desired schema
for Hudi, handling different message formats (e.g., before/after
images for updates), or basic data type conversions.

3. Write the processed data into Bronze Hudi tables.

The Flink Hudi sink provides options to define record keys, specify write
operations, and manage how records are merged, which are critical for CDC
workloads. Example integrations often show Flink processing Debezium
data and sinking it to Hudi.

Writing to Bronze Hudi tables
The processed CDC events will be written into Hudi tables in the Bronze
layer, such as hudi_sales_transactions_bronze and
hudi_customer_master_bronze.

We recommend using MOR for streaming CDC ingestion. MOR tables
handle frequent small updates efficiently by writing changes to log files,
deferring the merge with base files to an asynchronous compaction process.



This results in lower write amplification and latency compared to COW
tables.

Figure 10-2 shows the CDC pipeline to configure a Flink sink for writing to
a Hudi table. You will need to specify a few key settings. The Hudi table
type is typically set to MERGE_ON_READ, enabling efficient streaming
writes with asynchronous compaction. The table base path indicates the
target location of the Hudi table, like a URL of an Amazon S3 path. Set the
record key(s), such as order_id for a sales dataset, so that Hudi can
identify individual records. To determine record merging order, set the
ordering field to a timestamp field like update_timestamp, allowing
Hudi to determine which record version is the most recent. Partitioning is
handled by setting the partition fields, often based on the transaction or
event date to support efficient querying. Finally, the Hudi write operation
(discussed in Chapter 3) is typically set to upsert, ensuring that new data
either inserts or updates records appropriately based on the primary key.

A critical aspect of reliable data ingestion is ensuring exactly-once
processing semantics. Flink achieves this through its robust checkpointing
mechanism, which periodically snapshots the state of the application and
the position in input streams. When combined with Hudi’s transactional
commit protocol, where each batch of writes is committed atomically to the
Hudi timeline, end-to-end exactly-once semantics can be achieved. This
guarantees that each CDC event affects the Hudi table exactly once, even in
the presence of failures.



Figure 10-2. Flink-based CDC ingestion pipeline

Handling schema evolution
Source database schemas rarely stay the same because business needs
evolve, new columns get added, and data types shift. A reliable CDC
pipeline needs to handle these changes without breaking the flow of data.
Flink CDC connectors, including those built on Debezium, are built for this:
they detect schema changes upstream and propagate them downstream.

Hudi recommends backward-compatible schema evolution. By setting the
table schema in the processing engine (like Spark or Flink) and enabling
schema evolution on write (discussed in Chapter 3), Hudi can automatically
accommodate new fields from incoming data, preventing pipeline failures.
This kind of adaptability is essential for keeping ingestion pipelines
resilient and ensuring that they continue to work as source systems grow
and change, without introducing brittleness or manual rework.

Ingesting Application Event Streams with Hudi Kafka
Connect Sink



In the preceding section, we hooked up the transactional tables. Now it’s
time to connect Hudi to RetailMax’s high-volume, real-time data.

For these application event streams, like web_clickstreams and
inventory_updates, originating from Kafka, the Hudi Sink Connector
for Kafka Connect provides an efficient and scalable ingestion path. These
Kafka topics carry events that are often append-only (like clickstream
events) or may involve updates based on a specific key (e.g., an inventory
update for a product SKU). The Hudi Kafka Connect sink is designed to
stream these records from Kafka into Hudi tables.

Using the Hudi Sink Connector for Kafka Connect
The Hudi Sink Connector for Kafka Connect offers a straightforward way
to ingest data from Kafka topics directly into Hudi tables, without a
separate processing engine like Spark or Flink, when you just want simple
pass-through ingestion. This architecture is shown in Figure 10-3.

To get this connector working, we’ll need to configure a few key settings.
Start by specifying
connector.class='org.apache.hudi.connect.HudiSinkC
onnector' and set tasks.max to define how many parallel tasks Kafka
Connect should use. Use topics or topics.regex to identify the
source Kafka topics you’re pulling from. Then, set target.base.path
to point to your destination storage location, and target.table.name
to name the target Hudi table (for RetailMax, this can be
hudi_web_clickstreams_bronze, for example).

Most streaming workloads benefit from using MOR as the table type.
You’ll also need to define the record key field(s), choose a field like
event_timestamp for record ordering and merging logic, and set up
your partitioning strategy.

A couple of Kafka-specific settings are worth noting too. The
hoodie.kafka. con trol. topic helps coordinate transactions across
tasks, and hoodie.kafka. com mit. interval.secs controls how



frequently the connector commits data to the Hudi table (60 seconds by
default).

With these settings in place, the connector can write cleanly into your
Bronze Hudi tables, such as hudi_web_clickstreams_bronze and
hudi_ inven tory_ updates_bronze, without adding unnecessary
pipeline complexity.

 

Figure 10-3. Kafka Connect–based ingestion pipeline architecture

Transaction coordination and performance
A significant feature of the Hudi Kafka Connect sink is its distributed
transaction coordination mechanism. The task owning partition 0 of the
source topic acts as a coordinator. It uses the
hoodie.kafka.control.topic to manage a two-phase commit
protocol across all worker tasks. This design achieves high throughput and
low latency while limiting the number of write actions (commits) on the
Hudi timeline to just one per commit interval. This is crucial for scaling
table metadata, especially with high-volume writes, compared to



approaches where each worker commits indepen dently, potentially leading
to a very large number of small commits on the timeline.

By default, the sink uses the MOR table type. This means incoming Kafka
records are typically appended directly to Hudi log files, which is a low-
latency operation. An asynchronous compaction/clustering table service can
then merge these log files into columnar base files. This approach reduces
memory pressure often associated with writing columnar files directly in a
streaming fashion.

For performance tuning, standard Kafka Connect worker configurations and
Kafka producer override configurations (e.g., batch.size, linger.ms,
compression.type) can be adjusted to optimize throughput. While
these are general Kafka Connect settings, they influence how data is
delivered to the Hudi sink, thereby impacting overall ingestion
performance.

Silver Layer: Creating Derived Datasets
The Silver layer serves as the primary source for business intelligence,
reporting, and ad hoc analytics, providing users with clean, conformed, and
enriched data.

Data from the Bronze layer is transformed, cleansed, validated, and
conformed in the Silver layer. This process, shown in Figure 10-4, involves
operations like filtering out bad records, handling nulls, standardizing data
types and formats, resolving data discrepancies, and joining datasets from
different sources to create an integrated view. Silver tables are often
modeled to resemble enterprise data warehouse dimensions and facts and
are suitable for business intelligence reporting and ad hoc analytics.





Figure 10-4. Data transformation flow in the Silver Layer

This layer involves significant data processing, such as joins, aggregations,
and data quality enforcement, making Hudi’s incremental processing
capabilities key to efficiently updating these tables. The choice between
MOR and COW depends on the specific table’s characteristics; if a Silver
table is frequently updated by streaming ETL jobs and needs to support
near-real-time queries, MOR might be suitable, whereas if it’s updated less
frequently (e.g., a daily batch ETL) and primarily serves read-heavy
analytical queries, COW can offer better read performance. Hudi’s ACID
transactions ensure that transformations are applied atomically, maintaining
data consistency while seamlessly unifying the two processing models,
batch and streaming, on the same table in storage.

Goals of the Silver Layer for RetailMax
The Silver layer aims to bridge the gap between raw, often messy source
data and the structured, reliable information needed for decision making.
For RetailMax, key objectives for the Silver layer include:

Data cleansing

Addressing inconsistencies, handling missing values (nulls), correcting
erroneous data, and standardizing formats (e.g., date formats,
categorical values).

Enrichment

Augmenting datasets by joining data from different Bronze tables; for
example, combining customers’ profile information from
hudi_customer_master_bronze with their transaction history
from hudi_sales_transactions_bronze.

Filtering

Removing records that are irrelevant for analytical purposes or that do
not meet quality standards.



Harmonization

Aligning data from different sources to a common schema or set of
business definitions (e.g., ensuring that product categories are consistent
across online and in-store sales data).

Light aggregations

Performing preliminary aggregations, such as creating session
summaries from raw web_clickstreams or calculating daily
inventory snapshots.

Specific examples of Silver Hudi tables for RetailMax include:

hudi_unified_customer_orders_silver

A table that integrates online and in-store sales data, joined with
customer and product details, providing a comprehensive view of each
order.

hudi_sessionized_clickstreams_silver

Raw clickstream events from the Bronze layer, which are processed to
identify user sessions and aggregate key metrics per session (e.g., pages
viewed, session duration, conversion events).

hudi_product_daily_inventory_silver

A table providing a daily snapshot of inventory levels for each product
across different locations, derived from the real-time
hudi_inventory_updates_bronze.

hudi_customer_profiles_silver

An enriched view of customer data, potentially including calculated
attributes like lifetime value (LTV) or purchase frequency.

Streaming-Based Transformations with Hudi Streamer



Given that its use cases require real-time or near-real-time data processing
in the Bronze layer, RetailMax can choose either Hudi Streamer (which is
Spark based) or Flink for Silver layer ingestion, both offering native
streaming ingest support. RetailMax decides on Hudi Streamer due to its
simplicity and native streaming ingest capabilities (see Chapter 8 for setup
and usage). Because Bronze tables are Hudi tables, Hudi Streamer can be
configured with HoodieIncrSource, which queries the source table’s
timeline and reads only commits since the last checkpoint. This allows
continuous incremental reads from MOR tables such as
hudi_web_clickstreams_bronze and
hudi_inventory_updates_bronze.

With Hudi Streamer, RetailMax can apply transformers for multitable joins
and enrichment—for example, sessionizing clickstreams or joining
inventory updates with product metadata or other dimension tables—before
the output flows into Silver Hudi tables such as
hudi_sessionized_clickstreams_silver and
hudi_product_realtime_stock_silver. Thanks to Hudi
Streamer checkpointing and Hudi’s transactional commits, these pipelines
can guarantee consistency.

When transformation logic becomes too complex or use-case specific,
RetailMax can add custom transformers to give engineers precise control
over the pipeline and sophisticated business rules. These transformers can
be chained as well, for multiple transformations. For instance, RetailMax
could derive near-real-time customer engagement features from page views,
dwell time, and cart activity, and write them into Silver Hudi tables such as
hudi_customer_engagement_silver.

In this layer, Hudi’s upsert semantics are essential. As new data flows into
the Bronze layer and existing records are updated, the Hudi Streamer job
processes those changes incrementally and updates the Silver tables
accordingly, keeping downstream datasets fresh and accurate in real time.

Batch and Incremental Transformations with Spark SQL



Not every transformation needs to happen in real time. For batch-oriented
workflows and processing data from batch sources, RetailMax decides to
use Spark SQL as the preferred engine.

Spark SQL handles a range of batch ETL use cases. For example,
RetailMax could run nightly jobs that enrich customer profiles by joining
hudi_customer_ mas ter_ bronze with aggregated purchase data
from hudi_sales_transactions_bronze, and occasionally with
third-party demographic datasets that update less frequently. Other common
workloads include performing daily aggregations to generate summary
tables like hudi_daily_regional_sales_silver or joining
transactional sales records with slower-moving reference data from the
product catalog.

These Spark SQL jobs typically read from Bronze Hudi tables, apply
business logic, and write the results into Silver Hudi tables. For read-heavy
Silver tables that are updated less frequently (e.g., once a day), RetailMax
should opt for the COW table type, which offers strong read performance
and simpler storage layouts.

Hudi’s incremental processing capabilities add another layer of efficiency.
Rather than scanning full tables or partitions on every batch run, Spark can
issue incremental queries that pull only the new or updated records since
the last checkpoint. This is done by using the table-valued function
hudi_table_changes and specifying a starting commit timestamp.

For RetailMax, that means a nightly job building
hudi_daily_sales_silver only needs to process the last 24 hours’
worth of changes from hudi_sales_transactions_bronze (there
is no need to reprocess the entire sales history!). This dramatically reduces
the volume of data scanned, cuts compute costs, and shortens ETL runtime.
It turns batch processing from a brute-force operation into a much more
surgical, delta-based workflow.

Let’s step through an illustrative example of a Spark SQL script performing
an incremental ETL to populate a Silver table,



hudi_daily_sales_summary_silver, from two Bronze
predecessors.

First, we establish the start commit time for the incremental processing
process. This would typically be fetched from a control table or the last
successful run’s end commit time (say, 20250608000000). We’ll also
tell Hudi to read incremental changes from our first Bronze source,
hudi_sales_transactions_bronze, which holds transactions:

CREATE OR REPLACE TEMPORARY VIEW incremental_sales_view AS 
SELECT 
    order_id, 
    customer_id, 
    product_id, 
    quantity, 
    price, 
    transaction_ts, 
    dt AS order_date 
FROM 
    hudi_table_changes( 
        'hudi_sales_transactions_bronze', 'latest_state', 
'20250608000000'); 

Next, we’ll read in the customer data so that we can join it with the
transactions:

CREATE OR REPLACE TEMPORARY VIEW customer_view AS 
SELECT 
    customer_id, 
    customer_name, 
    city, 
FROM 
    hudi_customer_master_bronze;

Then, we’ll go ahead and do the necessary transformations and
aggregations:

CREATE OR REPLACE TEMPORARY VIEW daily_sales_aggregated_view AS 
SELECT 
    s.order_date, 
    c.city, 
    p.category, 



    SUM(s.quantity * s.price) as total_sales_amount, 
    COUNT(DISTINCT s.order_id) as total_orders, 
    MAX(s.transaction_ts) as last_transaction_ts_in_batch 
FROM 
    incremental_sales_view s 
JOIN 
    customer_view c ON s.customer_id = c.customer_id 
JOIN 
    hudi_product_catalog_bronze p  
ON s.product_id = p.product_id 
GROUP BY 
    s.order_date, 
    c.city, 
    p.category;

And finally, we’ll write the aggregated data into a Silver Hudi table:

INSERT INTO hudi_daily_sales_summary_silver 
-- Use INSERT OVERWRITE for full partition replacement if logic 
dictates,  
SELECT 
    order_date, 
    city, 
    category, 
    total_sales_amount, 
    total_orders, 
FROM 
    daily_sales_aggregated_view;

Maintaining Data Quality and Consistency in the Silver
Layer
Whether you’re using Flink or Spark for transformations, maintaining a
high standard of data quality and consistency in the Silver layer is critical.
RetailMax can ensure this through a combination of Hudi’s built-in
guarantees and disciplined pipeline practices.

First, Hudi’s support for ACID transactions means every transformation,
whether batch or streaming, is applied atomically. If a job fails partway
through, Hudi prevents partial writes from being committed, ensuring that
Silver tables remain in a consistent and query-safe state.



To further protect data quality, each transformation job includes validation
checks. These checks verify data types, confirm referential integrity (where
applicable), and ensure that values fall within expected ranges. Any records
that fail these checks can be flagged or quarantined for follow-up, keeping
bad data from polluting trusted downstream assets.

Finally, Hudi handles failed writes gracefully. If a commit doesn’t complete
successfully, Hudi rolls it back automatically. Incomplete data is never
exposed to readers and is typically cleaned up during the next successful
write or by a background cleaning process. This self-healing mechanism is
essential for keeping the Silver layer healthy and trustworthy over time.

By building on these capabilities, RetailMax ensures that the Silver layer
remains a dependable foundation for analytics: clean, consistent, and 
always ready.

Gold Layer: Querying the Lakehouse for
Insights
RetailMax’s users—business analysts, data scientists, and reporting tools—
need efficient ways to query the data curated in the Silver layer.

The Gold layer contains highly refined, aggregated, and business-centric
data for exactly this purpose. Golden datasets are typically project specific
or tailored for consumption by specific downstream applications, such as
AI/machine learning models, advanced analytics, or executive dashboards.
Gold tables often represent key business entities or metrics and are
optimized for performance and ease of use by end users.

Hudi tables in the Gold layer store highly refined, aggregated data ready for
consumption and are often optimized for specific read patterns of business
intelligence tools or machine learning model training. COW tables are
commonly used in the Gold layer, especially for datasets that are read heavy
and updated less frequently, such as daily or weekly aggregations, because
COW tables provide better read performance due to data being stored in
columnar base files without on-the-fly log file merging. Additionally, data



models in the Gold layer are usually denormalized and focused on specific
business use cases.

The RetailMax Hudi lakehouse supports multiple query engines for
different analytical needs (see Figure 10-5). Business analysts use Trino for
interactive SQL and ad hoc analysis, while data scientists leverage Spark
SQL for batch analytics and complex transformations. Automated
applications access data through scheduled reports and APIs. The lakehouse
supports snapshot, read-optimized, incremental, and time travel queries to
serve diverse use cases across the organization.

Interactive Analytics with Trino
Trino is a high-performance, distributed SQL query engine designed for fast
analytic queries against various data sources, including data lakes. For
RetailMax, Trino will be the engine of choice for business analysts who
need to perform ad hoc exploration of customer behavior from
hudi_customer_profiles_silver, analyze sales trends using
hudi_daily_sales_silver, or check current inventory levels from
hudi_product_daily_inventory_silver. Setting this up will
involve configuring a catalog properties file (e.g.,
etc/catalog/hudi.properties) on both the Trino coordinator and worker
nodes.

The configuration starts with connector.name=hudi to activate the
Hudi connector. Next, hive.metastore.uri must be set to point to the
Hive Metastore Service, which Hudi uses to manage table schemas and
partition metadata. Depending on your storage backend, you’ll also need to
include the appropriate file system settings (i.e., s3.region and
s3.endpoint for Amazon S3–based storage).

With this setup in place, Trino can efficiently query Hudi tables across the
Bronze, Silver, and Gold layers, making it easy for analysts and
downstream systems to access up-to-date data without additional pipeline
complexity. The Hudi-Trino connector also supports using the multimodal



index to accelerate queries on the tables, providing one of the fastest
choices for interactive analytics.

Once the connection is set up, Trino users can query Hudi tables using
familiar SQL syntax. For COW tables, Trino runs snapshot queries directly
against the latest Apache Parquet (or Apache ORC) base files, always
reflecting the most recent committed data. For MOR tables, Trino can
perform an efficient merge of base files and log files in a vectorized
manner, still offering great query performance.

In some environments, time travel queries are also available. If both your
Trino Hudi connector and your Hudi table version support it, you can query
the table as it existed at a specific commit timestamp, which is useful for
auditing, debugging, or reproducing historical results.

Batch Analytics and Reporting with Spark SQL
While Trino can power RetailMax’s interactive querying needs, Apache
Spark SQL will be the company’s go-to tool for complex transformations
that feed into Gold tables, support scheduled reports and dashboards, and
enable data scientists to run intensive exploratory analyses and feature
engineering workflows.

Spark SQL provides robust support for querying Hudi tables across both
COW and MOR formats. A basic SELECT * FROM hudi_table runs
a snapshot query, returning the most up-to-date view of the data. For MOR
tables, Spark merges the base files and log files on the fly to construct this
real-time snapshot. Alternatively, when freshness is less critical, users can
query the read-optimized view of MOR tables to access only the compacted
base files, improving performance.

To keep Spark queries fast and efficient, RetailMax can lean on several key
optimization strategies. Data skipping provides a major performance boost.
With column stats and partition stats (discussed in Chapter 5), Spark can
prune irrelevant files based on min/max values in query predicates,
reducing I/O significantly. File sizing also matters; keeping base files large
and well aligned with storage block sizes (typically between 128 MB and 1



GB) helps Spark avoid the overhead that comes with processing lots of
small files. Hudi’s write-time sizing and background clustering services
help maintain that balance.

Spark tuning basics still apply. Configurations like
spark.sql.shuffle.partitions, executor memory, and core
counts make a difference, and Hudi-specific settings around metadata
caching or read parallelism can unlock further gains. Finally, appropriate
partitioning strategy and building relevant expression indexes can
dramatically reduce the data scanned during query execution.

Together, these practices will ensure that Spark SQL delivers scalable,
reliable performance across RetailMax’s analytical workloads.

Advanced Querying: Time Travel and Point-in-Time
Analysis
At RetailMax, time travel queries will play a critical role in day-to-day data
reliability and long-term analytical workflows. For example, when
investigating anomalies in hudi_inventory_updates_bronze,
teams will be able to query the table at a specific historical timestamp to
audit exactly what changed and when. The same principle will help them
debug ETL pipelines. By comparing snapshots of a Silver table such as
hudi_unified_customer_orders_silver before and after a
failed job, teams can pinpoint where a transformation went wrong or where
data corruption occurred.

Time travel also supports machine learning operations. When a model is
trained on feature data from a Gold table (such as
hudi_customer_segmentation_features_gold), RetailMax
can query that table at the exact commit used during training. This ensures
that experiments are fully reproducible, even months later.

Finally, analysts can use point-in-time queries to understand seasonal trends
by pulling consistent snapshots of sales data across different years, directly
from the sales tables. This level of historical precision is a strategic asset in
RetailMax’s data platform.



Hudi’s timeline architecture will make these queries practical and precise.
In Spark SQL, time travel is as simple as using the TIMESTAMP AS OF
clause. For example:

SELECT * FROM  
hudi_unified_customer_orders_silver 
TIMESTAMP AS OF '2023-01-15 10:30:00.000';

This query retrieves the exact state of the
hudi_unified_customer_orders_silver table as it existed at
10:30 a.m. on January 15, 2023. Spark also supports shorter formats such as
YYYY-MM-DD or raw commit timestamps for flexibility.

In Flink SQL, time travel works slightly differently. It’s typically treated as
a bounded (batch) query using commit markers. You specify the historical
view by setting the read.end-commit option:

SELECT * FROM hudi_inventory_updates_bronze  
/** OPTIONS('read.end-commit'='20230210120000000') */;

You can also define read.start-commit to scope a specific range of
changes. This approach lets Flink reconstruct the table’s state based on
precise commit metadata.

Underlying all of this is Hudi’s timeline, which records every action with
associated instant times. This detailed history provides the foundation for
data observability and reproducibility that’s difficult to achieve in
traditional lakehouse systems. For RetailMax, that means better audits,
clearer rollback paths, and the ability to answer critical “what happened
when” questions with confidence (Figure 10-5).





Figure 10-5. Querying the Lakehouse in the Gold Layer

Business Layer: AI-Driven Insights for
RetailMax
While not officially in the Medallion architecture, there’s one more layer
that we need to talk about, and it’s the layer that delivers the most visible
value to business stakeholders.

The business layer directly drives business value, such as AI-driven
recommendations, personalized marketing campaigns, and executive
dashboards providing real-time performance insights.

You can think of the business layer as a virtualization layer on top of the
Gold layer. The Gold table contains data that has already been transformed
into highly specific, business-oriented datasets. While these datasets are
primarily designed for consumption by advanced analytics, AI and machine
learning applications, and executive dashboards, in our experience, each
new application of the data usually requires additional data engineering
work. It’s much better for these kinds of experimental aggregations and
transformations to happen via Hudi than in some data scientist’s one-off
Jupyter notebook, especially if there’s a chance the experiment could go to
production.

Preparing Data for AI/Machine Learning in the Gold
Layer
The primary purpose of the Gold layer is to create datasets that are
optimized for AI/machine learning model training, inference, and other
specialized analytical tasks. This often involves:

Aggregations

Summarizing data to relevant granularities (e.g., daily customer
spending, weekly product sales by region)



Feature engineering

Creating new predictive features from existing data (e.g., Recency,
Frequency, Monetary [RFM] scores for customers; product affinity
scores; time-series lags and rolling averages for demand forecasting)

Denormalization

Joining multiple Silver tables to create wide, flat tables that are easier
for machine learning algorithms to consume

Specific formatting

Structuring data in formats required by specific machine learning
libraries or platforms (e.g., user-item interaction matrices for
recommendation systems)

Examples of Gold Hudi tables for RetailMax include:

hudi_customer_segmentation_features_gold

Contains features like RFM scores, average purchase value, preferred
product categories, and demographic information, used for training
customer segmentation models

hudi_product_recommendation_user_item_gold

Stores user-item interaction data (e.g., views, purchases, ratings) or
precomputed embeddings, serving as input for collaborative filtering or
content-based recommendation engines

hudi_demand_forecasting_ts_gold

Aggregated time-series data of product sales at the SKU/store level,
used for training demand forecasting models

hudi_marketing_campaign_roi_gold



A dataset that combines campaign spend, customer engagement, and
sales uplift attributed to specific marketing campaigns, used to calculate
ROI

These Gold tables are typically created using Spark SQL or Flink SQL,
performing final transformations on Silver layer data. For optimal read
performance by machine learning frameworks, these tables are often
configured as COW tables, as they are usually updated less frequently (e.g.,
daily or weekly) and are read intensively during model training or batch
inference.

Building a Knowledge Base for LLM-Powered
Applications with Ray and Hudi
The Marketing department is gearing up to roll out an LLM-based AI
assistant for internal teams. This assistant allows users to ask natural
language questions about customer trends, product performance, or
campaign effectiveness (e.g., “What were the top-selling product categories
for customers aged 25 to 35 in California last quarter?”). This requires
building a specialized knowledge base from RetailMax’s data.

To do this at scale, RetailMax might use Ray, an open source distributed
compute framework built for scaling AI and Python applications. With
ray.data.read_hudi(), the team can load large volumes of data
from Gold Hudi tables (such as hudi_customer_segments_gold
and hudi_product_summaries_gold) into Ray datasets. Ray’s
parallel execution then handles preprocessing, feature extraction, and any
necessary text processing to prepare the data for the next stage.

At the heart of RetailMax’s internal AI assistant is a Retrieval-Augmented
Generation (RAG) architecture: a system that combines the reasoning
capabilities of LLMs with real-time access to curated company data. This
architecture enables nontechnical users, like marketing analysts, to ask
complex data questions in plain language and receive grounded, data-
backed answers without touching SQL or business intelligence dashboards.



Building this kind of system involves a series of deliberate steps:

1. Data selection: RetailMax pulls the most relevant structured and
unstructured content from Gold Hudi tables, aggregated customer
behavior, product descriptions, sales summaries, and even
customer reviews.

2. Preprocessing with Ray: Ray cleans and chunks this data,
especially text-heavy content, into segments that can be embedded.

3. Embedding generation: Each chunk is passed through a high-
quality embedding model, such as a sentence transformer or
OpenAI’s embeddings API, converting it into a dense vector
representation.

4. Vector database population: These embeddings, along with
metadata such as the source Hudi table and primary keys, are
stored in a vector database such as FAISS, Milvus, or Pinecone.
The architecture includes a “context builder” that reads from a
Gold Hudi table and populates the “knowledge base” used during
inference.

The reliability and accuracy of this AI assistant depend entirely on the
quality of the data feeding it. Hudi provides the foundation here, ensuring
that the Gold layer offers not just fresh and consistent data, but also
auditability via time travel and incremental processing. This will give
RetailMax a major edge: a trustworthy, dynamic knowledge base rooted in
governed, production-grade data (unlike many ad hoc RAG pipelines that
rely on brittle, stale sources).

Here’s how the AI/RAG workflow would play out behind the scenes. A
team member might ask, “Compare the average spending of loyalty
program members versus nonmembers in the last month.” The system takes
that question and generates a query embedding using the same model that
was originally used to build the knowledge base. This embedding acts as a
fingerprint of the query’s meaning.



This embedding fingerprint is then used to search RetailMax’s vector
database for the most semantically similar data chunks. These will be small,
meaningful segments of context previously extracted from Gold Hudi tables
and might include recent sales summaries, loyalty program metrics, or
customer segmentation statistics.

The retrieved content is then combined with the original query during the
augmentation step. This combined prompt is carefully formatted, often
using a template that guides the LLM on how to interpret and use the
retrieved data effectively.

Finally, in the generation phase, the augmented prompt is sent to an LLM,
such as GPT-5 or Llama. The LLM responds with a fluent, grounded
answer that reflects both the user’s intent and the data pulled from
RetailMax’s knowledge base.

This RAG-powered pipeline, illustrated in Figure 10-6, gives RetailMax a
fast, intuitive layer of insight that removes friction from decision making. It
bridges the gap between structured data and natural language,
democratizing access to analytics and empowering teams to ask better
questions and get better answers on demand.



Figure 10-6. AI-powered workflow in the Business layer



Operationalizing and Optimizing the Hudi
Lakehouse
Building out the initial ingestion pipelines, transformation jobs, and AI
applications is only the beginning of the lakehouse adventure. Keeping
RetailMax’s lakehouse reliable, performant, and cost-effective over the long
term will be a different kind of journey: one of continuous optimization.
This means going beyond data engineering to manage performance, cost,
and table health over time.

At the center of this work are Hudi’s background table services, covered in
depth in Chapter 6, which must be tuned and scheduled for the evolving
workload. These services can also be deployed in different modes (inline,
async execution, and standalone), which will be critical to adapting to
shifting latency and throughput requirements.

RetailMax will use compaction, clustering, and cleaning to keep things
running smoothly across different layers of its lakehouse. For example:

Compaction will help ensure fast reads from write-intensive MOR
tables like hudi_sales_transactions_bronze and
hudi_web_clickstreams_bronze. By compacting delta
logs into Parquet base files, RetailMax can deliver fresh data
without overwhelming its query engines. It can use asynchronous
scheduling (e.g., triggered by the number of new commits) to
balance ingestion throughput with read performance.

Clustering will improve its query performance on Silver and Gold
tables like hudi_unified_customer_orders_silver or
hudi_customer_segments_gold, which will power product
analytics and machine learning workflows. RetailMax can use
asynchronous clustering with Spark-based strategies to sort data on
commonly filtered columns and reduce the small-file problem.

Cleaning can help manage storage cost and metadata performance
by removing old file versions that are no longer needed. At



RetailMax, cleaning will need to be carefully tuned to retain
enough history for compliance and debugging, while avoiding
storage bloat.

Each service is highly configurable, so RetailMax’s engineering team can
tune them to match their unique data freshness/read latency/cost-efficiency
requirements across ingestion, transformation, and reporting layers.

Concurrency Control and Multiwriter Scenarios
As RetailMax’s lakehouse matures, scenarios may arise where multiple
processes need to write to the same Hudi table concurrently. For example:

A Hudi Streamer job performs real-time updates to a Silver table,
while a nightly Spark batch job appends corrections or enrichments
to the same table.

An ingestion writer runs concurrently with an asynchronous table
service (like compaction or clustering) on the same table.

As we learned in Chapter 7, Hudi provides concurrency control
mechanisms to manage such scenarios.

Monitoring the Lakehouse
Effective monitoring is crucial for maintaining the health and performance
of RetailMax’s Hudi lakehouse.

As introduced in Chapter 9, Hudi integrates with a number of monitoring
systems such as AWS CloudWatch, Datadog, and Prometheus, covering
important metrics like commit latency and duration; the number of records
inserted, updated, and deleted; compaction and clustering backlog, duration,
and efficiency; file sizes and counts; index lookup performance; and
timeline activity. These metrics should be ingested into a centralized
monitoring system like Prometheus and visualized using dashboards in
Grafana, which provides visibility into the operational status of Hudi tables
and ingestion/transformation pipelines. RetailMax should also configure



alerts for critical conditions, such as failed Hudi commits, excessive
compaction or clustering lag, a rapid increase in small files, low disk space
on storage systems, and high error rates in ingestion jobs.

Data Resilience
Ensuring business continuity in the event of data corruption, accidental
deletions, or system failures is critical for RetailMax. Hudi provides
features that aid in commit rollback processes and enhance data resilience
(discussed in Chapter 9):

Savepoint

A savepoint marks a specific commit on the Hudi timeline as preserved.
The Hudi cleaner service will not delete any data files associated with a
savepointed commit or any commits leading up to it. This effectively
creates a restorable backup of the table’s state at that point in time.
RetailMax should regularly create savepoints for critical Hudi tables,
such as hudi_unified_customer_orders_ sil ver and key
Gold tables, based on its recovery point objective (RPO). Savepoints
can be created using Spark SQL with the command CALL
create_savepoint('table_name',
'commit_timestamp') or through the Hudi CLI/utilities.

Restore

The restore operation allows reverting a Hudi table to a previously
created savepoint. This operation is destructive in that it effectively rolls
back all changes made after the savepoint commit. All writes to the
table should be paused during a restore operation. This is a powerful
tool for recovering from logical data corruption or major errors.

By diligently implementing these operational practices, RetailMax can
ensure that its Hudi lakehouse remains a high-performing, reliable, secure,
and resilient platform for all its data-driven initiatives.



Performance Benchmarks and
Considerations
While this chapter has focused on building an end-to-end solution, it’s
important to acknowledge that the performance of any data lakehouse is a
critical concern. Hudi’s performance has been evaluated in various contexts,
including comparisons with other open source table formats like Apache
Iceberg and Delta Lake using industry-standard benchmarks such as TPC-
DS.

These benchmarks typically measure data loading times, query execution
speeds across a range of analytical queries, and the performance of
operations like merges (updates/deletes). The results often show that
performance is highly dependent on the specific workload (read heavy
versus write heavy, batch versus streaming), the chosen table type (COW
versus MOR), the configurations applied, and the maturity of query engine
integrations. For example, TPC-DS results have shown varying
performance characteristics: Hudi’s MOR tables can offer faster merges
compared to its COW tables, but potentially at the cost of slower query
performance if compaction is not aggressively managed. Data loading
performance can also differ; Hudi’s focus on keyed upserts and
preprocessing during ingestion can sometimes lead to longer initial load
times compared to formats optimized purely for bulk append-only
ingestion, but this provides benefits for incremental updates later.

Rather than pinning any single set of benchmark numbers, RetailMax
should focus on the architectural features and tuning strategies that most
directly impact performance:

Indexing for writes

Indexing is fundamental to keeping read and write operations
performant at scale. Hudi supports several indexing types (discussed in
detail in Chapter 5), including record, bucket, simple, and bloom, which
speed up upserts by identifying which file groups need updating without
scanning the entire table.



Indexing for reads

With column stats and partition stats maintained in the metadata table,
query engines can prune entire files or partitions that don’t match query
predicates, dramatically reducing I/O. Enabling the record index,
secondary index, and expression index in the metadata table further
improves read performance for equality-matching queries and flexible
predicate handling, unlocking the true power of Hudi’s multimodal
indexing.

File sizing

Tuning settings like hoodie.parquet.small.file.limit and
hoodie.parquet.max.file.size, and using Hudi’s built-in
clustering, helps avoid the small-file problem.

Table services

Asynchronous compaction and clustering keep MOR and COW tables
physically optimized over time, reducing small files and ensuring that
queries don’t slow down as data grows.

Incremental queries

Hudi supports delta-based querying. Instead of repro cessing entire
datasets, downstream jobs can efficiently process just the changes since
the last run.

Table 10-3 summarizes the Hudi features that influence performance and
their key use cases for RetailMax.



Table 10-3. Hudi feature impact on lakehouse performance for RetailMax
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Summary
This chapter walked through the full lifecycle of building a modern data
lakehouse for RetailMax Corp., a fictional company that mirrors real-world
complexity. Hudi served as the backbone for managing ingestion,
transformation, querying, and AI-driven insight generation across the
Bronze, Silver, and Gold layers.

We began by showing how Hudi supports a wide range of ingestion needs,
from streaming CDC using Flink and Debezium to high-throughput event
processing with Kafka Connect. Features like schema evolution,
transactional integrity, and exactly-once semantics helped ensure that these
pipelines were both reliable and future-proof.

In the transformation layer, we explored how Flink and Spark SQL each
play complementary roles, with Flink powering real-time data reshaping
and Spark enabling batch and incremental ETL. Here, Hudi’s support for
incremental queries proved critical to efficiency, especially as data volumes
scaled.

We then turned to the querying layer, where users at RetailMax can rely on
Trino for fast, interactive analytics and Spark SQL for deeper, batch-driven
exploration. Features like Hudi’s metadata table, pluggable indexing, and
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time travel queries elevated the performance and observability of the entire
platform.

Finally, we arrived at the Gold layer, where curated Hudi datasets fuel AI
and machine learning. We walked through how RetailMax uses Ray to build
an LLM-ready knowledge base from Hudi data, ultimately powering a RAG
system that delivers grounded, high-quality answers to natural language
questions.

Many of Hudi’s core capabilities surfaced in this chapter:

ACID transactions

Ensuring data consistency and reliability across all layers

Record-level updates and deletes

Allowing for efficient updates to data, crucial for CDC and maintaining
current views

Schema evolution

Adapting to changes in source data schemas without disrupting
pipelines

Table services

Essential for maintaining long-term table health, performance, and
storage efficiency

Query engine integration

Providing broad access to data via popular engines like Spark, Flink,
and Trino

Incremental processing

Revolutionizing ETL by allowing jobs to process only changed data



For readers embarking on their own Hudi lakehouse journey, the experience
of RetailMax Corp. offers several key takeaways:

Understand your data

Thoroughly analyze data sources, access patterns, and update
frequencies to make informed decisions about Hudi table types (COW
versus MOR), record key, ordering field, and partitioning.

Embrace the Medallion architecture

Use the Bronze, Silver, and Gold layers to progressively refine data
quality and tailor datasets for specific use cases.

Operationalize table services

Automate compaction, clustering, and cleaning. These are not
afterthoughts but critical components for a healthy, performant Hudi
deployment.

Leverage Hudi’s ecosystem

Utilize Hudi’s strong integrations with ingestion tools (Flink, Kafka
Connect, Spark), processing engines, and query engines to build a
cohesive data platform.

Prioritize performance from the start

Implement file sizing best practices, utilize Hudi’s metadata table and
indexing features, and design for incremental processing to ensure that
your lakehouse scales efficiently.

The data lakehouse paradigm, powered by technologies like Hudi,
represents the future of data platforms. It offers a unified approach to
managing diverse data types and workloads, breaking down silos and



enabling organizations to unlock the full potential of their data assets. As
Hudi continues to innovate in areas of performance, scalability, and ease of
use, its role as a cornerstone of modern data architectures will only continue
to grow. The patterns and techniques demonstrated in this chapter provide a
solid blueprint for building your own powerful and flexible end-to-end
solutions with Hudi.
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